1. bookVolume 24 (2016): Issue 4 (December 2016)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Down-regulation of miRNA-30c predicts poor prognosis in Colorectal Cancer patients

Published Online: 30 Dec 2016
Volume & Issue: Volume 24 (2016) - Issue 4 (December 2016)
Page range: 369 - 375
Received: 07 Jun 2016
Accepted: 06 Oct 2016
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Background: MiRNA-30c was a tumor suppressor in several human cancers, however, its association with clinicopathological features and prognosis in colorectal cancer (CRC) is unclear.

Materials and Methods: The expression level of miRNA-30c in 192 pairs of colorectal cancer and adjacent normal tissues was detected by Quantitative RT-PCR, the association between miRNA-30c expression and clinical characteristics and prognosis were statistically analyzed.

Results: miRNA-30c was significantly lower in CRC tissues specimens compared with matched normal adjacent tissue (P<0.001). MiRNA-30c was positively correlated with tumor size (P=0.012), TMN stage (P=0.002) and lymph node metastasis (P=0.004). The univariate analysis showed CRC patients with low miRNA-30c had distinctly shorter overall survival (P<0.001) than patients with high miRNA-30c expression level. The multivariate analysis was performed and informed that low miRNA-30c expression (P<0.001) might be an independent prognostic predictor for poor prognosis.

Conclusion: miRNA-30c could predict the prognosis of colorectal cancer which is helpful to choose reasonable treatment measures.

Keywords

1. Parkin DDM. Global cancer statistics in the year 2000. Lancet Oncol. 2001;2(9):533-43. DOI: 10.1016/S1470-2045(01)00486-7.10.1016/S1470-2045(01)00486-7Search in Google Scholar

2. Ng SC, Wong SH. Colorectal cancer screening in Asia. Br Med Bull. 2013;105(1):29-42. DOI: 10.1093/bmb/lds040.10.1093/bmb/lds040Search in Google Scholar

3. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853-8. DOI: 10.1126/science.1064921.10.1126/science.1064921Search in Google Scholar

4. Liu M, Chen H. The role of microRNAs in colorectal cancerr. J Genet Genomics. 2010;37(6):347-58. DOI: 10.1016/S1673-8527(09)60053-9.10.1016/S1673-8527(09)60053-9Search in Google Scholar

5. Wang H, An H, Wang B, Liao Q, Li W. miR-133a represses tumour growth and metastasis in colorectal cancer by targeting LIM and SH3 protein 1 and inhibiting the MAPK pathway. Eur J Cancer. 2013;49(18):3924-35. DOI: 10.1016/j.ejca.2013.07.149.10.1016/j.ejca.2013.07.14923968734Search in Google Scholar

6. Wu ZS, Wang CQ, Ru X, Xue L, Shan Y, Yang XQ, et al. Loss of miR-133a expression associated with poor survival of breast cancer and restoration of miR-133a expression inhibited breast cancer cell growth and invasion. Bmc Cancer. 2012;12(1):1-10. DOI: 10.1186/1471-2407-12-51.10.1186/1471-2407-12-51329752722292984Search in Google Scholar

7. Wu W, Yang P, Feng X, Wang H, Qiu Y, Tian T, et al. The relationship between and clinical significance of MicroRNA-32 and phosphatase and tensin homologue expression in colorectal cancer. Genes Chromosomes Cancer. 2013;52(12):1133-40. DOI: 10.1002/gcc.22108.10.1002/gcc.2210824123284Search in Google Scholar

8. Nagel R, Le SC, Diosdado B, Van dWM, Oude Vrielink JA, Bolijn A, et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res. 2008;68(14):5795-802. DOI: 10.1158/0008-5472.CAN-08-0951.10.1158/0008-5472.CAN-08-095118632633Search in Google Scholar

9. O’Connor SM, Young GP, Van HP, N G, James RJ, Michael MZ. Reduced accumulation of specific MicroRNAs colorectal neoplasia; colorectal neoplasia. Oncol & Carcinog. 2003.Search in Google Scholar

10. Zhang GJ, Zhou H, Xiao HX, Li Y, Zhou T. MiR-378 is an independent prognostic factor and inhibits cell growth and invasion in colorectal cancer. Bmc Cancer. 2014;14(6):109. DOI: 10.1186/1471-2407-14-109.10.1186/1471-2407-14-109397411424555885Search in Google Scholar

11. Li H, Dai S, Zhen T, Shi H, Zhang F, Yang Y, et al. Clinical and biological significance of miR-378a-3p and miR-378a-5p in colorectal cancer. Eur J Cancer. 2014;50(6):1207–21. DOI: 10.1016/j.ejca.2013.12.010.10.1016/j.ejca.2013.12.01024412052Search in Google Scholar

12. Rodríguez-González FG, Sieuwerts AM, Smid M, Look MP, Gelder MV, Weerd VD, et al. MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer. Breast Cancer Res Treat. 2011;127(1):43-51. DOI: 10.1007/s10549-010-0940-x.10.1007/s10549-010-0940-x20490652Search in Google Scholar

13. Budhu A, Jia H-L, Forgues M, Liu CG, Goldstein D, Lam A, et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology. 2008;47(3):897–907. DOI: 10.1002/hep.22160.10.1002/hep.2216018176954Search in Google Scholar

14. Huang Z, Long Z, Yi X, Yu X. Diagnostic and prognostic values of tissue hsa-miR-30c and hsa-miR-203 in prostate carcinoma. Tumour Biol. 2015:1-7. DOI: 10.1007/s13277-015-4262-9.10.1007/s13277-015-4262-926499781Search in Google Scholar

15. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, editors. AJCC cancer staging manual (7th ed). New York, NY: Springer; 2010.Search in Google Scholar

16. Huang B, Feng Y, Zhu L, Xu T, Huang L, Cai G. Smaller tumor size is associated with poor survival in stage II colon cancer: An analysis of 7,719 patients in the SEER database. Int J Surg.2016; 33(Pt A):157-63. DOI: 10.1016/j.ijsu.2016.07.073.10.1016/j.ijsu.2016.07.07327491969Search in Google Scholar

17. Amirkhah R, Farazmand A, Irfanmaqsood M, Wolkenhauer O, Wolkenhauer O, Schmitz U. The role of microRNAs in the resistance to colorectal cancer treatments. Cell Mol Biol. 2015;61(6):17-23. DOI: 10.14715/cmb/2015.61.6.4.Search in Google Scholar

18. Peng G, Yin Z, Li X, Wei W, Zhou B. Meta-analysis of human lung cancer microRNA expression profiling studies comparing cancer tissues with normal tissues. J Exp Clin Cancer Res. 2012;31(1):1-8. DOI: 10.1186/1756-9966-31-54.10.1186/1756-9966-31-54350208322672859Search in Google Scholar

19. Tanic M, Yanowsky K, Rodriguezantona C, Andrés R, Márquezrodas I, Osorio A, et al. Deregulated miRNAs in hereditary breast cancer revealed a role for miR-30c in regulating KRAS oncogene. Plos One. 2012;7(6). DOI: 10.1371/journal.pone.0038847.10.1371/journal.pone.0038847337246722701724Search in Google Scholar

20. Quintavalle C, Donnarumma E, Iaboni M, Roscigno G, Garofalo M, Romano G, et al. Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in glioma cells. Oncogene. 2012;31(34):4001–8. DOI: 10.1038/onc.2012.410.10.1038/onc.2012.41022964638Search in Google Scholar

21. Ichikawa T, Sato F, Terasawa K, Tsuchiya S, Toi M, Tsujimoto G, et al. Trastuzumab produces therapeutic actions by upregulating miR-26a and miR-30b in breast cancer cells. Plos One. 2012;7(2):e31422. DOI: 10.1371/journal.pone.0031422.10.1371/journal.pone.0031422328804322384020Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo