Open Access

Accuracy Investigation of Creating Orthophotomaps Based on Images Obtained by Applying Trimble-UX5 UAV


Cite

Bajwa, S. & Tian, L. (2001). Aerial CIR remote sensing for weed density mapping in a soybean field. Transactions of the American Society of Agricultural Engineers, vol. 44(6), pp. 1965- 1974Search in Google Scholar

Вовк, А.; Глотов, В.; Гуніна, А.; Маліцький, А.; Третяк, К.; Церклевич, А. (2015) Аналіз результатів для створення ортофотопланів та цифрових моделей рельєфу із застосуванням БПЛА TRIMBLE UX-5, Міжвідомчий наук.-техн. збірник “Геодезія, картографія і аерофотознімання”, № 81, pp. 89-102, http://ena.lp.edu.ua:8080/bitstream/ntb/31116/1/10-90-103.pdfSearch in Google Scholar

Бурштинська, Х. В.(1999). Аерофотографія: Навчальний підручник. - Львів, 356Search in Google Scholar

Catur, A. R. (2015). The 1st International Symposium on LAPAN-IPB Satellite for Food Security and Environmental Monitoring, The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia. Procedia Environmental Sciences, vol. 24, pp. 245 - 253Search in Google Scholar

Coppa, U., Guarnieri, A., Pirotti, F.& Vettore, A. (2009). Accuracy enhancement of unmanned helicopter positioning with low-cost system. Applied Geomatics, pp.85-9510.1007/s12518-009-0009-xSearch in Google Scholar

Fernández-Hernandez, J., González-Aguilera, D., Rodríguez-Gonzálvez, P. & Mancera-Taboada, J. (2014). Image-based modelling from unmanned aerial vehicle (UAV) photogrammetry: an effective, low-cost tool for archaeological applications. Archaeometry, vol. 57, 1 pp. 128-145Search in Google Scholar

Глотов, В. Церклевич, А., Збруцький, О., Колісніченко, В., Прохорчук, О., Карнаушенко, Р., Галецький, В. (2014) Аналіз і перспективи аерознімання з безпілотного літального апарата, Збірник наукових праць «Сучасні досягнення геодезичної науки та виробництва», № І(27), с. 131-136, http://ena.lp.edu.ua:8080/bitstream/ntb/31116/1/10-90-103.pdfSearch in Google Scholar

Haarbrink, R. & Eisenbeiss, H. (2008). Accurate DSM production from unmanned helicopter systems. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1, pp. 1259 - 1264Search in Google Scholar

Hadjimitsis, D., Clayton, C. & Hope, V. (2004). An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs. International Journal of Remote Sensing, vol. 25, no. 18, pp. 3651-3674.10.1080/01431160310001647993Search in Google Scholar

Hartley, R. & Zisserman, A., (2003). Multiple view geometry in computer vision, Cambridge University Press, NewYork, pp. 485-486 Search in Google Scholar

Klinken, R., Shepherd, D., Parr, R., Robinson, T. & Anderson, L. (2007). Mapping mesquite (prosopis) distribution and density using visual aerial surveys. Rangeland Ecology Management, vol. 60, pp. 408-41610.2111/1551-5028(2007)60[408:MMPDAD]2.0.CO;2Search in Google Scholar

Маслянко, В. Я. (2014) Применение 3d-технологий при оперативном планировании и проектировании открытых горных работ. XII всероссийское совещание по проблемам управления ВСПУ-2014, Москва, с. 4337-4347, http://vspu2014.ipu.ru/proceedings/prcdngs/4337.pdfSearch in Google Scholar

Mahiny, A. & Turner B. A (2007). Comparison of Four Common Atmospheric Correction Methods. Photogrammetric Engineering and Remote Sensing, vol.73, No 4, pp. 361-36810.14358/PERS.73.4.361Search in Google Scholar

Mayr, W. (2013). Unmanned aerial systems-for the rest of us. In: 54th Photogrammetric Week. Institut für Photogrammetrie, Universität Stuttgart, pp. 151-163Search in Google Scholar

Mikrut, S. (2016). Classical photogrammetry and UAV - selected ascpects. The International Archives of the Photogrammetry, Remote Sensing and Spatial information sciences, Volume XLI-B1, 2016 XXIII ISPRS Congress, 12-19 July 2016, Prague, Czech Republic, pp. 947 - 952 Search in Google Scholar

Mitch, B., Reid, A., Ramos, F. & Sukkarieh, S. (2010). Airborne Vision-Based Mapping and Classification of Large Farmland Environments. Journal of Field Robotics, vol. 27(5), pp. 632-655Search in Google Scholar

Nebiker, S., Annen, A., Scherrer, M. & Oesch, D. (2008). A light-weight multispectral sensor for micro UAV - opportunities for very high resolution airborne remote sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial information sciences, vol. XXXVII, Part B1, Beijing, China, pp. 1193-1200Search in Google Scholar

Petrie, G. (2013). Commercial operation of lightweight UAVs for aerial imaging and mapping. GEOInformatics, vol. 16, pp. 28-39Search in Google Scholar

Rehak, M., Mabillard, R. & Skaloud, J. (2013). A micro-UAV with the capability of direct georeferencing. International Society for Photogrammetry and Remote Sensing, Spatial Inform., Sci. XL-1/W2, pp. 317-32310.5194/isprsarchives-XL-1-W2-317-2013Search in Google Scholar

Sandmann, H. & Lertzman, K. (2003). Combining highresolution aerial photography with gradient-directed transects to guide field sampling and forest mapping in mountainous terrain. Forest Science, vol. 49(3), pp. 429-443Search in Google Scholar

Smith, G. М. & Milton, E., J. (1999). The use of the empirical line method to calibrate remotely sensed data to reflectance. International Journal of Remote Sensing, vol. 20(13), pp. 2653-266210.1080/014311699211994Search in Google Scholar

Steffen, R. & Förstner, W. (2008). On visual real time mapping for unmanned aerial vehicles. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII, Part B1, Beijing, China, pp. 57-62Search in Google Scholar

Vallet, J., Panissod, F., Strecha, C. & Tracol, M. (2011). Photogrammetric performance of an ultra light weight swinglet UAV. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII- 1/C22, pp. 253-258Search in Google Scholar

Vasuki, Y., Holden, Р., Kovesi, P. & Micklethwaite, S. (2014). Semi-automatic mapping of geological Structures using UAV-based photogrammetric data: An image analysis approach. Computers & Geosciences, 2014, vol. 69, pp. 22-3210.1016/j.cageo.2014.04.012Search in Google Scholar

Whelan, B. & James, T. (2010). An introduction to Precision Agriculture for Australian grains. Australian Centre for Precision Agriculture, University of Sydney for the Grains Research and Development Corporation.; p. 208Search in Google Scholar

Zhang, N., Wang, V. & Wang, N. (2002). Precision agriculture - A worldwide overview. Computers and Electronics in Agriculture, No. 36, pp.113-13210.1016/S0168-1699(02)00096-0Search in Google Scholar

Wang, J., Lin, Z. & Li. C. (2004). Reconstruction of buildings from a single UAV image. XX-th ISPRS Congress Istanbul, Turkey, pp. 100-103Search in Google Scholar

Накидной монтаж и оценка качества материалов аэрофотосъемкиSearch in Google Scholar

http://studopedia.ru/4_68430_nakidnoy-montazh-i-otsenka-kachestva-materialovaerofotos-emki.htmlSearch in Google Scholar

Trimble UX5 Aerial Imaging Solution: http://trl.trimble.com/docushare/dsweb/Get/Document-700672/022503-1205DUK_Trimble_UX5_DS_MarketSmart_0515_LR.pdf.Search in Google Scholar

eISSN:
2391-8152
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Computer Sciences, other, Geosciences, Geodesy, Cartography and Photogrammetry