Evaluation of deformable image registration (DIR) methods for dose accumulation in nasopharyngeal cancer patients during radiotherapy
Article Category: Research Article
Published Online: Sep 15, 2017
Page range: 438 - 446
Received: Jun 03, 2017
Accepted: Jul 16, 2017
DOI: https://doi.org/10.1515/raon-2017-0033
Keywords
© 2017 Wannapha Nobnop, Imjai Chitapanarux, Hudsaleark Neamin, Somsak Wanwilairat, Vicharn Lorvidhaya, Taweap Sanghangthum
This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction
Deformable image registration (DIR) is used to modify structures according to anatomical changes for observing the dosimetric effect. In this study, megavoltage computed tomography (MVCT) images were used to generate cumulative doses for nasopharyngeal cancer (NPC) patients by various DIR methods. The performance of the multiple DIR methods was analysed, and the impact of dose accumulation was assessed.
Patients and methods
The study consisted of five NPC patients treated with a helical tomotherapy unit. The weekly MVCT images at the 1st, 6th, 11th, 16th, 21st, 26th, and 31st fractions were used to assess the dose accumulation by the four DIR methods. The cumulative dose deviations from the initial treatment plan were analysed, and correlations of these variations with the anatomic changes and DIR methods were explored.
Results
The target dose received a slightly different result from the initial plan at the end of the treatment. The organ dose differences increased as the treatment progressed to 6.8% (range: 2.2 to 10.9%), 15.2% (range: -1.7 to 36.3%), and 6.4% (range: -1.6 to 13.2%) for the right parotid, the left parotid, and the spinal cord, respectively. The mean uncertainty values to estimate the accumulated doses for all the DIR methods were 0.21 ± 0.11 Gy (target dose), 1.99 ± 0.76 Gy (right parotid), 1.19 ± 0.24 Gy (left parotid), and 0.41 ± 0.04 Gy (spinal cord).
Conclusions
Accuracy of the DIR methods affects the estimation of dose accumulation on both the target dose and the organ dose. The DIR methods provide an adequate dose estimation technique for observation as a result of inter-fractional anatomic changes and are beneficial for adaptive treatment strategies.