Open Access

18F-fluorodeoxyglucose and 18F-flumazenil positron emission tomography in patients with refractory epilepsy


Cite

National Institute for Health and Clinical Excellence. Chapter 1. Introduction. In: National Clinical Guideline Centre, editors. The epilepsies: the diagnosis and management of the epilepsies in adults and children in primary and secondary care. London: Royal College of Physicians (UK); 2012. p. 21-8.National Institute for Health and Clinical Excellence. Chapter 1. Introduction. In: National Clinical Guideline Centre, editorsThe epilepsies: the diagnosis and management of the epilepsies in adults and children in primary and secondary careLondonRoyal College of Physicians (UK)2012218Search in Google Scholar

Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D, et al. ILAE commission on epidemiology. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 2011; 52(Suppl 7): 2-26.ThurmanDJBeghiEBegleyCEBergATBuchhalterJRDingDILAE commission on epidemiology. Standards for epidemiologic studies and surveillance of epilepsyEpilepsia201152 (Suppl 7)22610.1111/j.1528-1167.2011.03121.xSearch in Google Scholar

Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000; 342: 314-9.KwanPBrodieMJEarly identification of refractory epilepsyN Engl J Med2000342314910.1056/NEJM200002033420503Search in Google Scholar

Kelly KM, Chung SS. Surgical treatment for refractory epilepsy: review of patient evaluation and surgical options. Epilepsy Res Treat 2011; 2011:303624.KellyKMChungSSSurgical treatment for refractory epilepsy: review of patient evaluation and surgical optionsEpilepsy Res Treat2011201130362410.1155/2011/303624Search in Google Scholar

Chou CC, Shih YH, Yen DJ, Kwan SY, Yu HY. Long-term health-related quality of life in drug-resistant temporal lobe epilepsy after anterior temporal lobectomy. Epileptic Disord 2015; 17: 177-83.ChouCCShihYHYenDJKwanSYYuHYLong-term health-related quality of life in drug-resistant temporal lobe epilepsy after anterior temporal lobectomyEpileptic Disord2015171778310.1684/epd.2015.0744Search in Google Scholar

Gomez-Alonso J, Bellas-Lamas P. Surgical treatment for drug-resistant epilepsy. JAMA 2015; 313:1572.Gomez-AlonsoJBellas-LamasPSurgical treatment for drug-resistant epilepsyJAMA2015313157210.1001/jama.2015.2883Search in Google Scholar

Liu SY, Yang XL, Chen B, Hou Z, An N, Yang MH, et al. Clinical outcomes and quality of life following surgical treatment for refractory epilepsy: a systematic review and meta-analysis. Medicine (Baltimore) 2015; 94: e500.LiuSYYangXLChenBHouZAnNYangMHClinical outcomes and quality of life following surgical treatment for refractory epilepsy: a systematic review and meta-analysisMedicine (Baltimore)201594e50010.1097/MD.0000000000000500Search in Google Scholar

Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomised, controlled trial of surgery for temporal lobe epilepsy. N Engl J Med 2001; 345: 365-7.WiebeSBlumeWTGirvinJPEliasziwMA randomised, controlled trial of surgery for temporal lobe epilepsyN Engl J Med2001345365710.1056/NEJM200108023450510Search in Google Scholar

Taft C, Sager Magnusson E, Ekstedt G, Malmgren K. Health-related quality of life, mood, and patient satisfaction after epilepsy surgery in Sweden-a prospective controlled observational study. Epilepsia 2014; 55: 878-85.TaftCSager MagnussonEEkstedtGMalmgrenKHealth-related quality of life, mood, and patient satisfaction after epilepsy surgery in Sweden-a prospective controlled observational studyEpilepsia2014558788510.1111/epi.12616Search in Google Scholar

Engel J Jr, Wiebe S, French J, Sperling M, Williamson P, Spencer D, et al. Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the Quality Standards Subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology 2003; 60: 538-47.EngelJJrWiebeSFrenchJSperlingMWilliamsonPSpencerDPractice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the Quality Standards Subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological SurgeonsNeurology2003605384710.1046/j.1528-1157.2003.48202.xSearch in Google Scholar

Ryvlin P, Cross JH, Rheims S. Epilepsy surgery in children and adults. Lancet Neurol 2014; 13: 1114-26.RyvlinPCrossJHRheimsSEpilepsy surgery in children and adultsLancet Neurol20141311142610.1016/S1474-4422(14)70156-5Search in Google Scholar

Lehericy S, Semah F, Hasboun D, Dormont D, Clemenceau S, Granat O, et al. Temporal lobe epilepsy with varying severity: MRI study of 222 patients. Neuroradiology 1997; 39: 788-96.LehericySSemahFHasbounDDormontDClemenceauSGranatOTemporal lobe epilepsy with varying severity: MRI study of 222 patientsNeuroradiology1997397889610.1007/s0023400505079406205Search in Google Scholar

Rathore C, Dickson JC, Teotónio R, Ell P, Duncan JS. The utility of 18F fluorodeoxyglucose PET (FDG PET) in epilepsy surgery. Epilepsy Res 2014; 108:1306-14.RathoreCDicksonJCTeotónioREllPDuncanJSThe utility of 18F fluorodeoxyglucose PET (FDG PET) in epilepsy surgeryEpilepsy Res201410813061410.1016/j.eplepsyres.2014.06.01225043753Search in Google Scholar

Devous M, Thisted R, Morgan G, Leroy R, Rowe C. SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med 1998; 39: 285-93.DevousMThistedRMorganGLeroyRRoweCSPECT brain imaging in epilepsy: a meta-analysisJ Nucl Med19983928593Search in Google Scholar

Spencer S. The relative contributions of MRI, SPECT and PET imaging in epilepsy. Epilepsia 1994; 35: S72-89.SpencerSThe relative contributions of MRI, SPECT and PET imaging in epilepsyEpilepsia199435S728910.1111/j.1528-1157.1994.tb05990.x8206016Search in Google Scholar

Weil S, Noachtar S, Arnold S, Yousry TA, Winkler PA, Tatsch K. Ictal ECDSPECT differentiate between temporal and extratemporal epilepsy: confirmation by excellent postoperative seizure control. Nucl Med Commun 2001; 22: 233-7.WeilSNoachtarSArnoldSYousryTAWinklerPATatschKIctal ECDSPECT differentiate between temporal and extratemporal epilepsy: confirmation by excellent postoperative seizure controlNucl Med Commun200122233710.1097/00006231-200102000-0001611258411Search in Google Scholar

Blum DE, Ehsan T, Dungan D, Karis JP, Fisher RS. Bilateral temporal hypometabolism in epilepsy. Epilepsia 1998; 39: 651-9.BlumDEEhsanTDunganDKarisJPFisherRSBilateral temporal hypometabolism in epilepsyEpilepsia199839651910.1111/j.1528-1157.1998.tb01434.x9637608Search in Google Scholar

Willmann O, Wennberg R, May T, Woermann FG, Pohlmann-Eden B. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy. A meta-analysis. Seizure 2007; 16: 509-20.WillmannOWennbergRMayTWoermannFGPohlmann-EdenBThe contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy. A meta-analysisSeizure2007165092010.1016/j.seizure.2007.04.00117532231Search in Google Scholar

Taft C, Sager Magnusson E, Ekstedt G, Malmgren K. Health-related quality of life, mood, and patient satisfaction after epilepsy surgery in Sweden-a prospective controlled observational study. Epilepsia 2014; 55: 878-85.TaftCSager MagnussonEEkstedtGMalmgrenKHealth-related quality of life, mood, and patient satisfaction after epilepsy surgery in Sweden-a prospective controlled observational studyEpilepsia2014558788510.1111/epi.12616423290924701994Search in Google Scholar

Swartz BE, Tomiyasu U, Delgado-Escueta AV, Mandelkern M, Khonsari A. Neuroimaging in temporal lobe epilepsy: test sensitivity and relationships to pathology and post-surgical outcome. Epilepsia 1992; 33: 624-34.SwartzBETomiyasuUDelgado-EscuetaAVMandelkernMKhonsariANeuroimaging in temporal lobe epilepsy: test sensitivity and relationships to pathology and post-surgical outcomeEpilepsia1992336243410.1111/j.1528-1157.1992.tb02338.x1628575Search in Google Scholar

Manno EM, Sperling MR, Ding X, Jaggi J, Alavi A, O’Connor MJ, et al. Predictors of outcome after anterior temporal lobectomy: Positron emission tomography. Neurology 1994; 44: 2331-6.MannoEMSperlingMRDingXJaggiJAlaviAO’ConnorMJPredictors of outcome after anterior temporal lobectomy: Positron emission tomographyNeurology1994442331610.1212/WNL.44.12.2321Search in Google Scholar

Theodore WH, Sato S, Kufta C, Balish MB, Bromfield EB, Leiderman DB. Temporal lobectomy for uncontrolled seizures: The role of positron emission tomography. Ann Neurol 1992; 32: 789-94.TheodoreWHSatoSKuftaCBalishMBBromfieldEBLeidermanDBTemporal lobectomy for uncontrolled seizures: The role of positron emission tomographyAnn Neurol1992327899410.1002/ana.4103206131471870Search in Google Scholar

Rathore C, Dickson JC, Teotónio R, Ell P, Duncan JS. The utility of 18F-fluorodeoxyglucose PET (FDG PET) in epilepsy surgery. Epilepsy Res 2014; 108: 1306-14.RathoreCDicksonJCTeotónioREllPDuncanJSThe utility of 18F-fluorodeoxyglucose PET (FDG PET) in epilepsy surgeryEpilepsy Res201410813061410.1016/j.eplepsyres.2014.06.012Search in Google Scholar

Singhal T, Alavi A, Kim CK. Brain: positron emission tomography tracers beyond [¹⁸F]fluorodeoxyglucose. PET Clin 2014; 9: 267-76.SinghalTAlaviAKimCKBrain: positron emission tomography tracers beyond [¹⁸F]fluorodeoxyglucosePET Clin201492677610.1016/j.cpet.2014.03.009Search in Google Scholar

Inaji M, Maehara T. PET, SPECT, and MEG in the diagnosis of epilepsy. Nihon Rinsho 2014; 72: 827-33.InajiMMaeharaTPET, SPECT, and MEG in the diagnosis of epilepsyNihon Rinsho20147282733Search in Google Scholar

Casse R, Rowe CC, Newton M, Berlangieri SU, Scott AM. Positron emission tomography and epilepsy. Mol Imaging Biol 2002; 4: 338-51.CasseRRoweCCNewtonMBerlangieriSUScottAMPositron emission tomography and epilepsyMol Imaging Biol200243385110.1016/S1536-1632(02)00071-9Search in Google Scholar

Ismet Sarikaya. PET studies in epilepsy. Am J Nucl Med Mol Imaging 2015; 5: 416-30.IsmetSarikayaPET studies in epilepsyAm J Nucl Med Mol Imaging2015541630Search in Google Scholar

Kuhl E, Engel J, Phelps E, Selin C. Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann Neurol 1980; 18: 348-60.KuhlEEngelJPhelpsESelinCEpileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3Ann Neurol1980183486010.1002/ana.410080403Search in Google Scholar

Engel, J, Kuhl E, Phelps E, Crandall H. Comparative localization of epileptic foci in partial epilepsy by PCT and EEG. Ann Neurol 198; 12: 529-37.EngelJKuhlEPhelpsECrandallHComparative localization of epileptic foci in partial epilepsy by PCT and EEGAnn Neurol198125293710.1002/ana.410120605Search in Google Scholar

Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 2009; 36: 2103-10.VarroneAAsenbaumSVander BorghtTBooijJNobiliFNågrenKEANM procedure guidelines for PET brain imaging using [18F]FDG, version 2Eur J Nucl Med Mol Imaging20093621031010.1007/s00259-009-1264-0Search in Google Scholar

Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frölich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002; 17: 302-16.HerholzKSalmonEPeraniDBaronJCHolthoffVFrölichLDiscrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PETNeuroimage2002173021610.1006/nimg.2002.1208Search in Google Scholar

Loessner A, Alavi A, Lewandrowski KU, Mozley D, Souder E, Gur RE. Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med 1995; 36: 1141-9.LoessnerAAlaviALewandrowskiKUMozleyDSouderEGurRERegional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with ageJ Nucl Med19953611419Search in Google Scholar

Won HJ, Chang KH, Cheon JE, Kim HD, Lee DS, Han MH, et al. Comparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsy. AJNR Am J Neuroradiol 1999; 20: 593-9.WonHJChangKHCheonJEKimHDLeeDSHanMHComparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsyAJNR Am J Neuroradiol1999205939Search in Google Scholar

Hwang SI, Kim JH, Park SW, Han MH, Yu IK, Lee SH, et al. Comparative analysis of MR imaging, positron emission tomography, and ictal single-photon emission CT in patients with neocortical epilepsy. Am J Neuroradiol 2001; 22: 937-46.HwangSIKimJHParkSWHanMHYuIKLeeSHComparative analysis of MR imaging, positron emission tomography, and ictal single-photon emission CT in patients with neocortical epilepsyAm J Neuroradiol20012293746Search in Google Scholar

Fink GR, Pawlik G, Stefan H, Pietrzyk U, Wienhard K, Heiss WD. Temporal lobe epilepsy: evidence for interictal uncoupling of blood flow and glucose metabolism in temporomesi al structures. J Neurol Sci 1996; 137: 28-34.FinkGRPawlikGStefanHPietrzykUWienhardKHeissWDTemporal lobe epilepsy: evidence for interictal uncoupling of blood flow and glucose metabolism in temporomesi al structuresJ Neurol Sci1996137283410.1016/0022-510X(95)00323-TSearch in Google Scholar

Zubal IG, Avery RA, Stokking R, Studholme C, Corsi M, Dey H, et al. Ratio-images calculated from interictal positron emission tomography and single-photon emission computed tomography for quantification of the uncoupling of brain metabolism and perfusion in epilepsy. Epilepsia 2000; 41:1560-6.ZubalIGAveryRAStokkingRStudholmeCCorsiMDeyHRatio-images calculated from interictal positron emission tomography and single-photon emission computed tomography for quantification of the uncoupling of brain metabolism and perfusion in epilepsyEpilepsia2000411560610.1111/j.1499-1654.2000.001560.x11114214Search in Google Scholar

Buch K, Blumenfeld H, Spencer S, Novotny E, Zubal IG. Evaluating the accuracy of perfusion/metabolism (SPET/PET) ratio in seizure localization. Eur J Nucl Med Mol Imaging 2008; 35: 579-88.BuchKBlumenfeldHSpencerSNovotnyEZubalIGEvaluating the accuracy of perfusion/metabolism (SPET/PET) ratio in seizure localizationEur J Nucl Med Mol Imaging2008355798810.1007/s00259-007-0550-y17938922Search in Google Scholar

Desai A, Bekelis K, Thadani VM, Roberts DW, Jobst BC, Duhaime AC, et al. Interictal PET and ictal subtraction SPECT: sensitivity in the detection of seizure foci in patients with medically intractable epilepsy. Epilepsia 2013; 54: 341-50.DesaiABekelisKThadaniVMRobertsDWJobstBCDuhaimeACInterictal PET and ictal subtraction SPECT: sensitivity in the detection of seizure foci in patients with medically intractable epilepsyEpilepsia2013543415010.1111/j.1528-1167.2012.03686.xSearch in Google Scholar

Drzezga A, Arnold S, Minoshima S, Noachtar S, Szecsi J, Winkler P, et al. 18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 1999; 40: 737-46.DrzezgaAArnoldSMinoshimaSNoachtarSSzecsiJWinklerP18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysisJ Nucl Med19994073746Search in Google Scholar

Javeria N, Rajesh I, Seetharam R. Ictal PET in presurgical workup of refractory extratemporal epilepsy. Ann Indian Acad Neurol 2013; 16: 676-7.JaveriaNRajeshISeetharamRIctal PET in presurgical workup of refractory extratemporal epilepsyAnn Indian Acad Neurol201316676710.4103/0972-2327.120475Search in Google Scholar

Siclari F, Prior JO, Rossetti AO. Ictal cerebral positron emission tomography (PET) in focal status epilepticus. Epilepsy Res 2013; 105: 356-61.SiclariFPriorJORossettiAOIctal cerebral positron emission tomography (PET) in focal status epilepticusEpilepsy Res20131053566110.1016/j.eplepsyres.2013.03.006Search in Google Scholar

Engel J Jr, Brown WJ, Kuhl DE, Phelps ME, Mazziotta JC, Crandall PH. Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy. Ann Neurol 1982; 12: 518-28.EngelJJrBrownWJKuhlDEPhelpsMEMazziottaJCCrandallPHPathological findings underlying focal temporal lobe hypometabolism in partial epilepsyAnn Neurol1982125182810.1002/ana.410120604Search in Google Scholar

Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 2002; 213: 1-47.WatanabeMMaemuraKKanbaraKTamayamaTHayasakiHGABA and GABA receptors in the central nervous system and other organsInt Rev Cytol200221314710.1016/S0074-7696(02)13011-7Search in Google Scholar

Sieghart W. Pharmacology of benzodiazepine receptors: an update. J Psychiatry Neurosci 1994; 19: 24-9.SieghartWPharmacology of benzodiazepine receptors: an updateJ Psychiatry Neurosci19941924910.1097/00002826-199201001-00272Search in Google Scholar

Derry JM, Dunn SM, Davies M. Identification of a residue in the gammaaminobutyric acid type A receptor alpha subunit that differentially affects diazepam-sensitive and -insensitive benzodiazepine site binding. J Neurochem 2004; 88: 1431-8.DerryJMDunnSMDaviesMIdentification of a residue in the gammaaminobutyric acid type A receptor alpha subunit that differentially affects diazepam-sensitive and -insensitive benzodiazepine site bindingJ Neurochem2004881431810.1046/j.1471-4159.2003.02264.xSearch in Google Scholar

Goldfrank, Lewis R. Goldfrank’s toxicologic emergencies. New York: McGraw-Hill; 2002.Goldfrank LewisRGoldfrank’s toxicologic emergenciesNew YorkMcGraw-Hill2002Search in Google Scholar

Savic I, Persson A, Roland P, Pauli S, Sedvall G, Widén L. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 1988; 2: 863-6.SavicIPerssonARolandPPauliSSedvallGWidénLIn-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic fociLancet19882863610.1016/S0140-6736(88)92468-3Search in Google Scholar

Heiss WD, Kracht L, Grond M, Rudolf J, Bauer B, Wienhard K, et al. [(11) C]Flumazenil/H(2)O positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy. Stroke 2000; 31: 366-9.HeissWDKrachtLGrondMRudolfJBauerBWienhardK[(11) C]Flumazenil/H(2)O positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapyStroke200031366910.1161/01.STR.31.2.36610657407Search in Google Scholar

Mayer M, Koeppe RA, Frey KA, Foster NL, Kuhl DE. Positron emission tomography measures of benzodiazepine binding in Alzheimer´s disease. Arch Neuro 1995; 52: 314-7.MayerMKoeppeRAFreyKAFosterNLKuhlDEPositron emission tomography measures of benzodiazepine binding in Alzheimer´s diseaseArch Neuro199552314710.1001/archneur.1995.005402701100277872887Search in Google Scholar

Pascual B, Prieto E, Arbizu J, Marti-Climent JM, Peñuelas I, Quincoces G, et al . Decreased carbon-11-flumazenil binding in early Alzheimer’s disease. Brain 2012; 135: 2817-25.PascualBPrietoEArbizuJMarti-ClimentJMPeñuelasIQuincocesGDecreased carbon-11-flumazenil binding in early Alzheimer’s diseaseBrain201213528172510.1093/brain/aws210Search in Google Scholar

Litton JE, Neiman J, Pauli S, Farde L, Hindmarsh T, Halldin C, et al. PET analysis of [11C]flumazenil binding to benzodiazepine receptors in chronic alcohol-dependent men and healthy controls. Psychiatry Res 1993; 50:1-13.LittonJENeimanJPauliSFardeLHindmarshTHalldinCPET analysis of [11C]flumazenil binding to benzodiazepine receptors in chronic alcohol-dependent men and healthy controlsPsychiatry Res19935011310.1016/0925-4927(93)90019-ESearch in Google Scholar

Benes FM, Vincent SL, Alsterberg G, Bird ED, SanGiovanni JP. Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. J Neurosci 1992; 12: 924-9.BenesFMVincentSLAlsterbergGBirdEDSanGiovanniJPIncreased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenicsJ Neurosci199212924910.1523/JNEUROSCI.12-03-00924.1992Search in Google Scholar

Maziere M, Hantraye P, Prenant C, Sastre J, Comar D. Synthesis of ethyl 8-fluoro-5,6-dihydro-5-[11C]methyl-6-oxo-4H-imidazo [1,5-a] [1,4]benzodiazepine-3-carboxylate (RO 15.1788-11C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography. Int J Appl Radiat Isot 1984; 35: 973-6.MaziereMHantrayePPrenantCSastreJComarDSynthesis of ethyl 8-fluoro-5,6-dihydro-5-[11C]methyl-6-oxo-4H-imidazo [1,5-a] [1,4]benzodiazepine-3-carboxylate (RO 15.1788-11C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomographyInt J Appl Radiat Isot198435973610.1016/0020-708X(84)90215-1Search in Google Scholar

Savic I, Ingvar M, Stone-Elander S. Comparison of [11C]flumazenil and [18F] FDG as PET markers of epileptic foci. J Neurol Neurosurg Psychiatry 1993; 56: 615-21.SavicIIngvarMStone-ElanderSComparison of [11C]flumazenil and [18F] FDG as PET markers of epileptic fociJ Neurol Neurosurg Psychiatry1993566152110.1136/jnnp.56.6.615Search in Google Scholar

Boundy KL, Rowe CC, Black AB, Kitchener MI, Barnden LR, Sebben R, et al. Localization of temporal lobe epileptic foci with iodine-123 iododexetimide cholinergic neuroreceptor single-photon emission computed tomography. Neurology 1996; 47: 1015-20.BoundyKLRoweCCBlackABKitchenerMIBarndenLRSebbenRLocalization of temporal lobe epileptic foci with iodine-123 iododexetimide cholinergic neuroreceptor single-photon emission computed tomographyNeurology19964710152010.1212/WNL.47.4.1015Search in Google Scholar

Beer HF, Bläuenstein PA, Hasler PH, Delaloye B, Riccabona G, Bangerl I, et al. In vitro and in vivo evaluation of iodine-123-Ro 16-0154: a new imaging agent for SPECT investigations of benzodiazepine receptors. J Nucl Med 1990; 31: 1007-14.BeerHFBläuensteinPAHaslerPHDelaloyeBRiccabonaGBangerlIIn vitro and in vivo evaluation of iodine-123-Ro 16-0154: a new imaging agent for SPECT investigations of benzodiazepine receptorsJ Nucl Med199031100714Search in Google Scholar

Samson Y, Hantraye P, Baron JC, Soussaline F, Comar D, Mazière M. Kinetics and displacement of [11C]RO 15-1788, a benzodiazepine antagonist, studied in human brain in vivo by positron tomography. Eur J Pharmacol 1985; 110: 247-51.SamsonYHantrayePBaronJCSoussalineFComarDMazièreMKinetics and displacement of [11C]RO 15-1788, a benzodiazepine antagonist, studied in human brain in vivo by positron tomographyEur J Pharmacol19851102475110.1016/0014-2999(85)90218-3Search in Google Scholar

Moerlein SM, Perlmutter JS. Binding of 5-(2’-[18F]fluoroethyl)flumazenil to central benzodiazepine receptors measured in living baboon by positron emission tomography. Eur J Pharmacol 1992; 218: 109-15.MoerleinSMPerlmutterJSBinding of 5-(2’-[18F]fluoroethyl)flumazenil to central benzodiazepine receptors measured in living baboon by positron emission tomographyEur J Pharmacol19922181091510.1016/0014-2999(92)90153-USearch in Google Scholar

Leveque P, Labar D, Gallez B. Biodistribution, binding specificity and metabolism of [18F]fluoroethylflumazenil in rodents. Nucl Med Biol 2001; 28:809-14.LevequePLabarDGallezBBiodistribution, binding specificity and metabolism of [18F]fluoroethylflumazenil in rodentsNucl Med Biol2001288091410.1016/S0969-8051(01)00251-7Search in Google Scholar

Grunder G, Siessmeier T, Lange-Asschenfeldt C, Vernaleken I, Buchholz HG, Stoeter P, et al. [18F]Fluoroethylflumazenil: a novel tracer for PET imaging of human benzodiazepine receptors. Eur J Nucl Med 2001; 28: 1463-70.GrunderGSiessmeierTLange-AsschenfeldtCVernalekenIBuchholzHGStoeterP[18F]Fluoroethylflumazenil: a novel tracer for PET imaging of human benzodiazepine receptorsEur J Nucl Med20012814637010.1007/s00259010059411685488Search in Google Scholar

Mitterhauser M, Wadsak W, Wabnegger L, Mien L-K, Togel S, Langer O, et al. Biological evaluation of 2ʹ-[18F]fluoroflumazenil ([18F]FFMZ), a potential GABA receptor ligand for PET. Nucl Med Biol 2004; 31: 291-5.MitterhauserMWadsakWWabneggerLMienL-KTogelSLangerOBiological evaluation of 2ʹ-[18F]fluoroflumazenil ([18F]FFMZ), a potential GABA receptor ligand for PETNucl Med Biol200431291510.1016/j.nucmedbio.2003.09.00315013496Search in Google Scholar

Chang YS, Jeong JM, Yoon YH, Kang WJ, Lee SJ, Lee DS, et al. Biological properties of 2ʹ-[18F]fluoroflumazenil for central benzodiazepine receptor imaging. Nucl Med Biol 2005; 32: 263-8.ChangYSJeongJMYoonYHKangWJLeeSJLeeDSBiological properties of 2ʹ-[18F]fluoroflumazenil for central benzodiazepine receptor imagingNucl Med Biol200532263810.1016/j.nucmedbio.2004.12.00415820761Search in Google Scholar

Ryzhikov NN, SenecaN, Krasikova RN, GomzinaNA, Shchukin E, Fedorova OS, et al. Preparation of highly specific radioactivity [18F] flumazenil and its evaluation in cynomolgus monkey by positron emission tomography. Nucl Med Biol 2005; 32: 109-16.RyzhikovNNSenecaNKrasikovaRNGomzinaNAShchukinEFedorovaOSPreparation of highly specific radioactivity [18F] flumazenil and its evaluation in cynomolgus monkey by positron emission tomographyNucl Med Biol2005321091610.1016/j.nucmedbio.2004.11.00115721755Search in Google Scholar

Vivash L, Gregoire MC, Lau EW, Ware RE, Binns D, Roselt P, et al. 18F-flumazenil: a γ-aminobutyric acid A-specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. J Nucl Med 2013; 54:1270-7.VivashLGregoireMCLauEWWareREBinnsDRoseltP18F-flumazenil: a γ-aminobutyric acid A-specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsyJ Nucl Med2013541270710.2967/jnumed.112.10735923857513Search in Google Scholar

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, Haematology, Oncology, Radiology