Open Access

Simulation and Experimental Study in the Process of Wave Energy Conversion

 and    | Nov 16, 2016
Polish Maritime Research's Cover Image
Polish Maritime Research
Special Issue Title: Marine Processes Studies and Marine Engineering

Cite

1. Shi, H.D., Cao, F,F., Ma, Z., Liu, Z., 2014. Physical Model Experimental Study on the Floating Buoy Wave Power Generator. Journal of Ocean Technology. 33 (4):98-104.Search in Google Scholar

2. Gao, H.T., Li, B., 2015. Establishment of motion model for wave capture buoy and research on hydrodynamic performance of floating-type wave energy converter. Polish Maritime Research. 22 (S1):106-111.10.1515/pomr-2015-0041Search in Google Scholar

3. Birgersson, K.E., Balaya, P., Yan, J., 2011. Energy Solutions for a Sustainable World. Applied Energy. 90 (1), 1-2.10.1016/j.apenergy.2011.08.006Search in Google Scholar

4. Esteban,M., Leary, D., 2012. Current developments and future prospects of offshore wind and ocean energy. Applied Energy, 90(1):128-136.10.1016/j.apenergy.2011.06.011Search in Google Scholar

5. Yang, L., Hals, J., Moan, T., 2010. Analysis of dynamic effects relevant for the wear damage in hydraulic machines for wave energy conversion. Ocean Engineering. 37(13):1089-1102.10.1016/j.oceaneng.2010.04.005Search in Google Scholar

6. Evans, D.V., 1981. Maximum wave-power absorption under motion constraints. Applied Ocean Research 3 (4):200-203.10.1016/0141-1187(81)90063-8Search in Google Scholar

7. Choi, K.S., Yang, D.S., Park, S.Y., Cho, B.H., 2012. Design and performance test of hydraulic PTO for wave energy converter. International Journal of Precision Engineering & Manufacturing. 13(5), 795-801.10.1007/s12541-012-0105-4Search in Google Scholar

8. Pizer, D.J., 1993. Maximum wave-power absorption of point absorbers under motion constraints. Applied Ocean Research. 15 (4), 227-234.10.1016/0141-1187(93)90011-LSearch in Google Scholar

9. Vantorre, M., Banasiak, M., Verhoeven, R., 2004. Modelling of hydraulic performance and wave energy extraction by a point absorber in heave. Applied Ocean Research 26, 61-72.10.1016/j.apor.2004.08.002Search in Google Scholar

10. Babarit, A., Duclos, G., Clement, A.H., 2004. Comparison of latching control strategies for a heaving wave energy device in random sea. Applied Ocean Research 26, 227-238.10.1016/j.apor.2005.05.003Search in Google Scholar

11. Ma, Z., 2013. The Study on Hydrodynamic Performance of Oscillating Floater Buoy Wave Energy Converter [D]. Ocean University of China.Search in Google Scholar

12. Zhang, D.H., Li, W., Lin, Y.G., 2009. Wave energy in China: Current status and perspectives. Renewable energy. 34(10), 2089-2092.10.1016/j.renene.2009.03.014Search in Google Scholar

13. Bailey, H., Bryden, I.G., 2011. Influence of a quadratic power take-off on the behavior of a self-contained inertial referenced wave energy converter. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., 226 (1), 15-22.10.1177/1475090211425143Search in Google Scholar

14. Zhang, D.X., 2001, Analyzing primary parameters of twinfloater ocean wave generate electricity device and designing it with most optimal geometric shape. Yan shan University. 46-50.Search in Google Scholar

15. Antonelli, M., Baccioli, A., Francesconi, M., Psaroudakis, P., Martorano, L., 2015. Small Scale ORC Plant Modeling with the AMESim Simulation Tool: Analysis of Working Fluid and Thermodynamic Cycle Parameters Influence. Energy Procedia. 81:440-449.10.1016/j.egypro.2015.12.118Search in Google Scholar

16. Lisowski, J., 2014. Comparison of dynamic games in application to safe ship control. Polish Maritime Research. 21(3), 3-12.10.2478/pomr-2014-0024Search in Google Scholar

17. Phan, L.K., Stive, M.J.F., 2015. Coastal Mangrove Squeeze in the Mekong Delta. Journal of Coastal Research. 31(2), 233-243.10.2112/JCOASTRES-D-14-00049.1Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences