1. bookVolume 19 (2019): Issue 2 (December 2019)
Journal Details
License
Format
Journal
eISSN
1339-4533
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
access type Open Access

Additive Manufacturing of Steel and Copper Using Fused Layer Modelling: Material and Process Development

Published Online: 15 Jun 2020
Volume & Issue: Volume 19 (2019) - Issue 2 (December 2019)
Page range: 63 - 81
Journal Details
License
Format
Journal
eISSN
1339-4533
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
Abstract

Fused Layer Modelling (FLM) is one out of several material extrusion (ME) additive manufacturing (AM) methods. FLM usually deals with processing of polymeric materials but can also be used to process metal-filled polymeric systems to produce metallic parts. Using FLM for this purpose helps to save costs since the FLM hardware is cheap compared to e.g. direct metal laser processing hardware, and FLM offers an alternative route to the production of metallic components.

To produce metallic parts by FLM, the methodology is different from direct metal processing technologies, and several processing steps are required: First, filaments consisting of a special polymer-metal composition are produced. The filament is then transformed into shaped parts by using FLM process technology. Subsequently the polymeric binder is removed (”debinding”) and finally the metallic powder body is sintered. Depending on the metal powder used, the binder composition, the FLM production parameters and also the debinding and sintering processes must be carefully adapted and optimized.

The focal points of this study are as following:

1. To confirm that metallic parts can be produced by using FLM plus debinding and sintering as an alternative route to direct metal additive manufacturing.

2. Determination of process parameters, depending on the used metal powders (steel and copper) and optimization of each process step.

3. Comparison of the production paths for the different metal powders and their debinding and sintering behavior as well as the final properties of the produced parts.

The results showed that both materials were printable after adjusting the FLM parameters, metallic parts being produced for both metal powder systems. The production method and the sintering process worked out well for both powders. However there are specific challenges in the sintering process that have to be overcome to produce high quality metal parts. This study serves as a fundamental basis for understanding when it comes to the processing of steel and copper powder into metallic parts using FLM processing technology.

Keywords

[1] Gonzalez-Gutierrez, J., Cano, S., Schuschnigg, S., Kukla, C., Sapkota, J., Holzer, C.: Materials, vol. 11, 2018, doi:10.3390/ma1105084010.3390/ma11050840Search in Google Scholar

[2] German, RM., Bose, A.: Injection molding of metals and ceramics. Princeton NJ : MPIF, 1997Search in Google Scholar

[3] Chacón, JM., Caminero, MA., García-Plaza, E., Núñez, PJ.: Materials & Design, vol. 124, 2017, p. 143, doi:10.1016/j.matdes.2017.03.06510.1016/j.matdes.2017.03.065Search in Google Scholar

[4] Heller, BP., Smith, DE., Jack, DA.In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, Texas, 2015Search in Google Scholar

[5] Kuo, C-C., Mao, R-C.: Materials and Manufacturing Processes, vol. 31, 2015, p. 1113, doi:10.1080/10426914.2015.109059410.1080/10426914.2015.1090594Search in Google Scholar

[6] Ahn, SH., Montero, M., Odell, D., Roundy, S., Wright, PK.: Rapid Prototyping Journal, vol. 8, 2002, p. 248, doi:10.1108/1355254021044116610.1108/13552540210441166Search in Google Scholar

[7] Alafaghani, A., Qattawi, A., Alrawi, B., Guzman, A.: Procedia Manufacturing, vol. 10, 2017, p. 791, doi:10.1016/j.promfg.2017.07.07910.1016/j.promfg.2017.07.079Search in Google Scholar

[8] Álvarez, K., Lagos, RF., Aizpun, M.: Ing. Inv., vol. 36, 2016, p. 110, doi:10.15446/ing.investig.v36n3.5661010.15446/ing.investig.v36n3.56610Search in Google Scholar

[9] Bellehumeur, C., Li, L., Sun, Q., Gu, P.: Journal of Manufacturing Processes, vol. 6, 2004, p. 170, doi:10.1016/S1526-6125(04)70071-710.1016/S1526-6125(04)70071-7Search in Google Scholar

[10] Carneiro, OS., Silva, AF., Gomes, R.: Materials & Design, vol. 83, 2015, p. 768, doi:10.1016/j.matdes.2015.06.05310.1016/j.matdes.2015.06.053Search in Google Scholar

[11] Elkins, K., Nordby, H., Janak, C., Gray, RW., Bøhn, HH., Baird, DG. In: Proc. 8th. Solid Freeform Fabrication Symposium. The University of Texas, Austin, August 11-13 1997, p. 441Search in Google Scholar

[12] Rahim, TNAT., Abdullah, AM., Akil, H., Mohamad, D., Rajion, ZA.: Express Polym. Lett., vol. 11, 2017, p. 963, doi:10.3144/expresspolymlett.2017.9210.3144/expresspolymlett.2017.92Search in Google Scholar

[13] Shojib Hossain, M., Espalin, D., Ramos, J., Perez, M., Wicker, R.: J. Manuf. Sci. Eng., vol. 136, 2014, p. 61002, doi:10.1115/1.402853810.1115/1.4028538Search in Google Scholar

[14] Masood, SH., Song, WQ.: Materials & Design, vol. 25, 2004, p. 587, doi:10.1016/j.matdes.2004.02.00910.1016/j.matdes.2004.02.009Search in Google Scholar

[15] Giberti, H., Strano, M., Annoni, M., Yuan, Y., Menon, L., Xu, X.: MATEC Web of Conferences, vol. 43, 2016, p. 3003, doi:10.1051/matecconf/2016430300310.1051/matecconf/20164303003Search in Google Scholar

[16] Mireles, J., Espalin, D., Roberson, D., Zinniel, B., Medina, F., Wicker, R. In: Proceedings of the Solid Freeform Fabrication Symposium. Solid Freeform Fabrication Symposium. Austin, Texas, 2012, p. 836Search in Google Scholar

[17] Venkataraman, N., Rangarajan, S., Matthewson, MJ., Safari, A., Danforth, SC., Yardimci, A., Guceri, SI. In: Proceedings of the Solid Freeform Fabrication Symposium. Solid Freeform Fabrication Symposium. Austin, Texas, 9-11 August, 1999Search in Google Scholar

[18] Wu, G., Langrana, NA., Rangarajan, S., McCuiston, R., Sadanji, R., Danforth, SC., Safari, A. In: Proceedings of the Solid Freeform Fabrication Symposium. Solid Freeform Fabrication Symposium. Austin, Texas, 9-11 August, 1999, p. 775Search in Google Scholar

[19] Wu, G., Langrana, NA., Sadanji, R., Danforth, S.: Materials & Design, vol. 23, 2002, p. 97, doi:10.1016/S0261-3069(01)00079-610.1016/S0261-3069(01)00079-6Search in Google Scholar

[20] Bandyopadhyay, A., Panda, RK., Janas, VF., Agarwala, MK., Danforth, SC., Safari, A.: Journal of the American Ceramic Society, vol. 80, 1997, p. 136610.1111/j.1151-2916.1997.tb02993.xSearch in Google Scholar

[21] McNulty, TF., Mohammadi, F., Bandyopadhyay, A., Shanefield, DJ., Danforth, SC., Safari, A.: Rapid Prototyping Journal, vol. 4, 1998, p. 144, doi:10.1108/1355254981023901210.1108/13552549810239012Search in Google Scholar

[22] Venkataraman, N., Rangarajan, S., Matthewson, MJ., Harper, B., Safari, A., Danforth, SC., Wu, G., Langrana, N., Guceri, SI., Yardimci, A.: Rapid Prototyping Journal, vol. 6, 2000, p. 244, doi:10.1108/1355254001037334410.1108/13552540010373344Search in Google Scholar

[23] Agarwala, MK., Weeren, R. van, Bandyopadhyay, A., Safari, A., Danforth, SC., Priedeman, WR. In: Proceedings of the Solid Freeform Fabrication Symposium. Solid Freeform Fabrication Symposium. Austin, Texas. Eds. DL. Bourell, et al., 1996Search in Google Scholar

[24] Agarwala, MK., Weeren, R. van, Bandyopadhyay, A., Whalen, PJ., Safari, A., Danforth, SC. In: Proceedings of the Solid Freeform Fabrication Symposium. Solid Freeform Fabrication Symposium. Austin, Texas. Eds. DL. Bourell, et al., 1996Search in Google Scholar

[25] Agarwala, MK., Jamalabad, VR., Langrana, NA., Safari, A., Whalen, PJ., Danforth, SC.: Rapid Prototyping Journal, vol. 2, 1996, p. 4, doi:10.1108/1355254961073203410.1108/13552549610732034Search in Google Scholar

[26] Allahverdi, M., Danforth, SC., Jafari, MA., Safari, A.: Journal of the European Ceramic Society, vol. 21, 2001, p. 1485, doi:10.1080/0015019010822517710.1080/00150190108225177Search in Google Scholar

[27] Atisivan, R., Bose, S., Bandyopadhyay, A.: Journal of the American Ceramic Society, vol. 84, 2001, p. 221, doi:10.1111/j.1151-2916.2001.tb00635.x10.1111/j.1151-2916.2001.tb00635.xSearch in Google Scholar

[28] Bandyopadhyay, A., Das, K., Marusich, J., Onagoruwa, S.: Rapid Prototyping Journal, vol. 12, 2006, p. 121, doi:10.1108/1355254061067069010.1108/13552540610670690Search in Google Scholar

[29] Iyer, S., McIntosh, J., Bandyopadhyay, A., Langrana, N., Safari, A., Danforth, SC., Clancy, RB., Gasdaska, C., Whalen, PJ.: Int J Applied Ceramic Technology, vol. 5, 2008, p. 127, doi:10.1111/j.1744-7402.2008.02193.x10.1111/j.1744-7402.2008.02193.xSearch in Google Scholar

[30] Jafari, MA., Han, W., Mohammadi, F., Safari, A., Danforth, SC., Langrana, N.: Rapid Prototyping Journal, vol. 6, 2000, p. 161, doi:10.1108/1355254001033704710.1108/13552540010337047Search in Google Scholar

[31] McNulty, TF., Shanefield, DJ., Danforth, SC., Safari, A.: Journal of the American Ceramic Society, vol. 82, 1999, p. 1757, doi:10.1111/j.1151-2916.1999.tb01996.x10.1111/j.1151-2916.1999.tb01996.xSearch in Google Scholar

[32] Pistor, CM.: Adv. Eng. Mater., vol. 3, 2001, p. 418, doi:10.1002/1527-2648(200106)3:6<418:AID-ADEM418>3.0.CO;2-QSearch in Google Scholar

[33] Rangarajan, S., Qi, G., Venkataraman, N., Safari, A., Danforth, SC.: Journal of the American Ceramic Society, vol. 83, 2000, p. 1663, doi:10.1111/j.1151-2916.2000.tb01446.x10.1111/j.1151-2916.2000.tb01446.xSearch in Google Scholar

[34] Lengauer, W., Duretek, I., Schwarz, V., Kukla, C., Kitzmantel, M., Neubauer, E., Lieberwirth, C., Morrison, V. In: Euro PM2018 Proceedings. EURO PM2018 Congress & Exhibition. Bilbao, Spain, 14. - 18. October. Bellstone : EPMA, 2018 p. 1Search in Google Scholar

[35] Bai, Y., Williams, CB.: Rapid Prototyping Journal, vol. 21, 2015, p. 177, doi:10.1108/RPJ-12-2014-018010.1108/RPJ-12-2014-0180Search in Google Scholar

[36] Hwang, KS., Hsieh, YM.: Metall Mater Trans A, vol. 27, 1996, p. 245, doi.org/10.1007/BF0264840310.1007/BF02648403Search in Google Scholar

[37] Danninger, H., Frauendienst, G., Streb, K., Ratzi, R.: Dissolution of different graphite grades during sintering of PM steels, 2001, 67, p. 7210.1016/S0254-0584(00)00422-3Search in Google Scholar

[38] Danninger, H., Gierl, C.: Processes in PM steel compacts during the initial stages of sintering, 2001, 67, p. 4910.1016/S0254-0584(00)00419-3Search in Google Scholar

[39] Danninger, H., Gierl, C., Kremel, S., et al.: Degassing and deoxidation processes during sintering of unalloyed and alloeyd pm stells, 2002, 2, p. 125Search in Google Scholar

[40] Azadbeh, M., Danninger, H., Gierl-Mayer, C.: Particle rearrangement during liquid phase sintering of Cu – 20Zn and Cu – 10Sn – 10Pb prepared from prealloyed powder, 2013, 56, p. 2, doi.org/10.1179/0032589913Z.00000000013810.1179/0032589913Z.000000000138Search in Google Scholar

[41] Oro Calderon, R. de, Campos, M., Gierl-Mayer, C., Danninger, H., Torralba, JM.: Metallurgical and Materials Transactions A, vol. 46, 2015, p. 134910.1007/s11661-014-2707-1Search in Google Scholar

[42] Butković, S., Oruč, M., Šarić, E., Mehmedović, M.: Mater Tehnol, vol. 46, 2012, p. 185Search in Google Scholar

[43] Slotwinski, JA., Garboczi, EJ., Hebenstreit, KM.: J Res Natl Inst Stand Technol, vol. 119, 2014, p. 494, doi.org/10.6028/jres.119.01910.6028/jres.119.019448729026601041Search in Google Scholar

[44] Hairer, F., Karelova, A.: Etching techniques for the microstructural characterization of complex phase steels by light microscopy, 2008, p. 50Search in Google Scholar

[45] Gierl, C., Danninger, H., Avakemian, A., Synek, J., Sattler, J., Zlatkov, BS., Maat, J., Arzl, A., Neubing, HC.: Powder Injection Moulding International, vol. 6, 2012, no. 4, p. 65Search in Google Scholar

[46] Zlatkov, BS., Griesmayer, E., Loibl, H., Aleksić, OS., Danninger, H., Gierl, C., Lukić, LS.: Science of Sintering, vol. 40, 2008, p. 79, https://doi.org/10.2298/SOS0801077Z10.2298/SOS0801077ZSearch in Google Scholar

[47] Schatt, W.: Sintervorgänge. Düsseldorf : VDI-Verlag, 1992Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo