Cite

[1] Mesbahi A. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep Pract Oncol Radiother. 2010;15(6):176-80.10.1016/j.rpor.2010.09.001386317724376946Search in Google Scholar

[2] Mesbahi A, Jamali F, Garehaghaji N. Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy. Bioimpacts. 2013;3(1):29-35.Search in Google Scholar

[3] Saharkhiz H, Gharehaghaji N, Nazarpoor M, et al. The Effect of Inversion Time on the Relationship Between Iron Oxide Nanoparticles Concentration and Signal Intensity in T1-Weighted MR Images. Iran J Radiol. 2014;11(2):e12667.10.5812/iranjradiol.12667409063725035696Search in Google Scholar

[4] Hainfeld JF, Slatkin DN, Focella TM, et al. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2014;79(939):248-253.10.1259/bjr/1316988216498039Search in Google Scholar

[5] Reuveni T, Motiei M, Romman Z, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine. 2011;6:2859-2864.Search in Google Scholar

[6] Popovtzer R, Agrawal A, Kotov NA, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008;8(12):4593-4596.10.1021/nl8029114277215419367807Search in Google Scholar

[7] Cho EC, Glaus C, Chen J, et al. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med. 2010;16(12):561-573.10.1016/j.molmed.2010.09.004305298221074494Search in Google Scholar

[8] Boote E, Fent G, Kattumuri V, et al. Gold nanoparticle contrast in a phantom and juvenile swine: models for molecular imaging of human organs using x-ray computed tomography. Acad Radiol. 2010;17(4):410-417.10.1016/j.acra.2010.01.006283553920207313Search in Google Scholar

[9] Kim D, Park S, Lee JH, et al. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2007;129(24):7661-7665.10.1021/ja071471p17530850Search in Google Scholar

[10] Cormode DP, Skajaa T, van Schooneveld MM, et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett. 2008;8(11):3715-3723.10.1021/nl801958b262980118939808Search in Google Scholar

[11] Rabin O, Perez JM, Grimm J, et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater. 2006;5(2):118-122.10.1038/nmat157116444262Search in Google Scholar

[12] Hyafil F, Cornily JC, Feig JE, et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med. 2007;13:636-641.10.1038/nm157117417649Search in Google Scholar

[13] Mukundan S Jr, Ghaghada KB, Badea CT, et al. A liposomal nanoscale contrast agent for preclinical CT in mice. AJR Am J Roentgenol. 2006;186(2):300-307.10.2214/AJR.05.052316423931Search in Google Scholar

[14] Cormode DP, Jarzyna PA, Mulder WJ, et al. Modified natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliv Rev. 2010;62(3):329-338.10.1016/j.addr.2009.11.005282766719900496Search in Google Scholar

[15] Peng C, Zheng L, Chen Q, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012;33(4):1107-1119.10.1016/j.biomaterials.2011.10.05222061490Search in Google Scholar

[16] Jackson PA, Rahman WN, Wong CJ, et al. Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur J Radiol. 2010;75(1):104-109.10.1016/j.ejrad.2009.03.05719406594Search in Google Scholar

[17] Ghaghada KB, Badea CT, Karumbaiah L, et al. Evaluation of tumor microenvironment in an animal model using a nanoparticle contrast agent in computed tomography imaging. Acad Radiol. 2011;18(1):20-30.10.1016/j.acra.2010.09.003301687521145026Search in Google Scholar

[18] Huo D, He J, Li H, et al. Fabrication of Au@Ag core-shell NPs as enhanced CT contrast agents with broad antibacterial properties. Colloids Surf B Biointerfaces. 2014;117:29-35.10.1016/j.colsurfb.2014.02.00824607958Search in Google Scholar

[19] Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater 2013;25(19):2641-2660.10.1002/adma.20130008123553799Search in Google Scholar

[20] Nakagawa T, Gonda K, Kamei T, et al. X-ray computed tomography imaging of a tumor with high sensitivity using gold nanoparticles conjugated to a cancer-specific antibody via polyethylene glycol chains on their surface. Sci Technol Adv Mater. 2016;17(1):387-397.10.1080/14686996.2016.1194167510186427877890Search in Google Scholar

[21] Papadakis AE, Perisinakis K, Raissaki M, et al. Effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral pediatric and adult CT angiography: a phantom study. Invest Radiol. 2013;48(4):192-199.10.1097/RLI.0b013e31827efc1723344518Search in Google Scholar

[22] Silvestri A, Polito L, Bellani G, et al. Gold nanoparticles obtained by aqueous digestive ripening: Their application as X-ray contrast agents. J Colloid Interface Sci. 2015;439:28-33.10.1016/j.jcis.2014.10.02525463172Search in Google Scholar

[23] Silvestri A, Zambelli V, Ferretti AM, et al. Design of functionalized gold nanoparticle probes for computed tomography imaging. Contrast Media Mol Imaging. 2016;11(5):405-414.10.1002/cmmi.170427377033Search in Google Scholar

[24] Zhou B, Zheng L, Peng C, et al. Synthesis and characterization of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging. ACS Appl Mater Interfaces 2014;6(19):17190-17199.10.1021/am505006z25208617Search in Google Scholar

[25] Ebrahimi M, Johari-Ahar M, Hamzeiy H, et al. Electrochemical impedance spectroscopic sensing of methamphetamine by a specific aptamer. BioImpacts. 2012;2(2):91-95.Search in Google Scholar

[26] Qiu H, Sun Y, Huang X, et al. A sensitive nanoporous gold-based electrochemical aptasensor for thrombin detection. Colloids Surf B Biointerfaces. 2010;79(1):304-308.10.1016/j.colsurfb.2010.04.01720452755Search in Google Scholar

[27] Kim CS, Ahn YC, Wilder-Smith P, et al. Efficient and facile delivery of gold nanoparticles in vivo using dissolvable microneedles for contrast-enhanced optical coherence tomography. Biomed Opt Express. 2010;1(1):106-113.10.1364/BOE.1.000106300516721258450Search in Google Scholar

[28] Xu C, Tung GA, Sun S. Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem Mater. 2008;20(13):4167-4169.10.1021/cm8008418260055919079760Search in Google Scholar

[29] Kim D, Jon S. Gold nanoparticles in image-guided cancer therapy. Inorganica Chimica Acta. 2012;393:154-164.10.1016/j.ica.2012.07.001Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics