Open Access

Change in dust collection efficiency of liquid collectors in conditions of dedusting liquid recirculation


Cite

1. Łopata, S. & Ocłoń, P. (2012). Modelling and optimizing operating conditions of heat exchanger with finned elliptical tubes. In L. Hector Juarez (Ed.), Fluid dynamics, computational modeling and applications (pp. 327–356). Rijeka, Croatia: InTech.Search in Google Scholar

2. Ocłoń, P., Łopata, St., Nowak, M. & Benim, A. (2014). Numerical study on the effect of inner tube fouling on the thermal performance of high-temperature fin-and-tube heat exchanger. Prog. Comput. Fluid Dyn. 15(5), 290. DOI: 10.1504/PCFD.2015.072014.10.1504/PCFD.2015.072014Open DOISearch in Google Scholar

3. Brauer, H., Dyląg, M. & Talaga, J. (1989). Zur fluiddynamik von gerührten gas/feststoff/fltssigkeits-systemen. Chem. Ing. Tech. 61, 978–979 (in German).10.1002/cite.330611218Open DOISearch in Google Scholar

4. Brauer, H., Dyląg, M. & Talaga, J. (1996). Modellvorstellung zur entstehung der vollständigen suspension im rühbehälter. Forsch. Ingenieurwes 62, 239–245 (in German).Search in Google Scholar

5. Dyląg, M. & Talaga, J. (1995). Modeling of multiphase flows. Chem. Process Eng. 16(3), 407–420.Search in Google Scholar

6. Kabsch, M. (1976). Methods of dust wettability measurements. Wrocław, Poland: Wroclaw University of Technology Publisher (in Polish).Search in Google Scholar

7. Nazarow, G., Krawczyk J., Blinicziew, W., Czagin, O. (2000). Influence of the design of the dust collecting apparatus on the limiting concentration of the irrigating suspension. Himia Himic. Tehnol. 43(2), 80–85 (in Russian).Search in Google Scholar

8. Krawczyk, J. (2015). Development of wet methods of industrial gasses dedustind on the basis of experimental investigations. Cracow, Poland: Cacow University of Technology Publisher (in Polish).Search in Google Scholar

9. Krawczyk J., Dyląg, M. & Rosiński, J. (1998). Vermin-derung des wasserverbrauchs bei der entstaubung. Gefahrst. Reinhalt. L. 59(1), 45–49.Search in Google Scholar

10. Byeon, S.H., Lee, B.K. & Mohan, B.R. (2012). Removal of ammonia and particulate matter using a modified turbulent wet scrubbing system. Sep. Purif. Technol. 98, 221–229. DOI: 10.1016/j.seppur.2012.07.014.10.1016/j.seppur.2012.07.014Search in Google Scholar

11. Mohan, Jain, R. & Meikap, B. (2008). Comprehensive analysis for prediction of dust removal efficiency using twin-fluid atomization in a spray scrubber. Sep. Purif. Technol. 63 (2), 269–277. DOI: 10.1016/j.seppur.2008.05.006.10.1016/j.seppur.2008.05.006Open DOISearch in Google Scholar

12. Kim, H., Jung, C., Oh, S. & Lee K. (2001). Particle removal efficiency of gravitational wet scrubber considering diffusion, interception and impaction. Environ. Eng. Sci. 18 (2), 125–136. DOI: 10.1089/10928750151132357.10.1089/10928750151132357Open DOISearch in Google Scholar

13. Lim, K., Lee, S. & Park, H. (2006). Prediction for particle removal efficiency of a reverse jet scrubber. J. Aerosol. Sci. 37 (12), 1826–1839. DOI: 10.1016/j.jaerosci.2006.06.010.10.1016/j.jaerosci.2006.06.010Open DOISearch in Google Scholar

14. Mohan, B., Biswas, S. & Meikap, B. (2008). Performance characteristics of the particulates scrubbing in a counter-current spray-column. Sep. Purif. Technol. 61(1), 96–102. DOI: 10.1016/j.seppur.2007.09.018.10.1016/j.seppur.2007.09.018Open DOISearch in Google Scholar

15. Meikap, B. & Biswas, M. (2004). Fly-ash removal efficiency in a modified multi-stage bubble column scrubber. Sep. Purif. Technol. 36(3), 177–190. DOI: 10.1016/S1383-5866(03)00213-2.10.1016/S1383-5866(03)00213-2Open DOISearch in Google Scholar

16. Ebert, F. & Büttner, H. (1996). Recent investigations with nozzle scrubbers. Powder Technol. 86(1), 31–36. DOI: 10.1016/0032-5910(95)03034-4.10.1016/0032-5910(95)03034-4Open DOISearch in Google Scholar

17. Gemci, T. & Ebert, F. (1992). Prediction of the particle capture efficiency based on the combined mechanisms (turbulent diffusion, inertial impaction, interception, and gravitation) by a 3-D simulation of a wet scrubber. J. Aerosol. Sci. 23, 769–772. DOI: 10.1016/0021-8502(92)90525-Z.10.1016/0021-8502(92)90525-ZOpen DOISearch in Google Scholar

18. Park, S., Jung, C., Jung, K., Lee, B. & Lee, K. (2005). Wet scrubbing of polydisperse aerosols by freely falling droplets. J. Aerosol. Sci. 36, 1444–1458. DOI: 10.1016/j.jaerosci.2005.03.012.10.1016/j.jaerosci.2005.03.012Open DOISearch in Google Scholar

19. Wang, Q., Chen, X. & Gong, X. (2013). The particle removing characteristics in a fixed valve tray column. Ind. Eng. Chem. Res. 52(9), 3441–3452. DOI: 10.1021/ie3027422.10.1021/ie3027422Open DOISearch in Google Scholar

20. Krawczyk, J. (1996). Wet dedusting, heat and mass exchange in apparatuses of intense performance. Moscow, Russia: Russian National Academy Publisher.Search in Google Scholar

21. Talaga, J., Brauer, H. & Dyląg, M. (1996). Modellvorstellung zur entstehung der vollständigen suspension im rühbehälter. Forsch. Ingenieurwes 62(9), 239–246. DOI: 10.1007/BF02601430.10.1007/BF02601430Open DOISearch in Google Scholar

22. Löffler, F. (1988). Staubabscheiden. New York, USA: Georg Thieme Verlag.Search in Google Scholar

23. Krawczyk, J., Czagin, O. & Postnikowa, I. (2010). The change of fractional dedusting efficiency with increase of liquid concentration for different wettability dusts. In proceedings of IX International Conference “Theoretical Basics of Energy and Resource-saving Processes, Equipment and Environmentally Safe Industries”, 28–30 September 2010 (pp. 121–128). Ivanovo, Russia: Ivanovo Stte University of Chemistry and Technology Publisher (in Polish).Search in Google Scholar

24. Krawczyk, J. & Pikoń, J. (1986). Abscheider mit zellen-ftllkorpern. Staub. Reinhalt. Luft 1, 22–25 (in German).Search in Google Scholar

25. Dłuska, E., Hubacz, R., Wroński, S., Kamieński, J., Dyląg, M. & Wójtowicz, R. (2007). The influence of helical flow on water fuel emulsion preparation. Chem. Eng. Commun. 194 (10), 1271–1286. DOI: 10.1080/00986440701293959.10.1080/00986440701293959Search in Google Scholar

26. Krawczyk, J., Roszak, Z. & Wisła H. (2006) Dedusting in bubbling and drop zones of periodic apparatus. Chem. Enginee. Equip. 45(37), 99–101 (in Polish).Search in Google Scholar

27. Wisła, H. (2009). Wet dedusting for full liquid recirculation. Doctoral dissertation, Cracow University of Technology, Cracow, Poland (in Polish).Search in Google Scholar

28. Krawczyk, J., Maszek, L., Mieszkowski, A. & Roszak, Z. (2008). Wet dust extraction in the condition of total liquid recirculation. Czasopismo Techniczne – Technical Transactions 2-M/2008 (2), 143–154 (in Polish).Search in Google Scholar

29. Krawczyk, J., Czagin, O. & Postnikowa, I. (2012). Changes in the dust capture during the impact aerosol of the liquid surface. Czasopismo Techniczne – Technical Transactions 2-M/2012 (6), 207–214 (in Polish).Search in Google Scholar

30. Szatko, W., Blinicziew, W. & Krawczyk, J. (2011). Comparison of mathematical models describing changes of the suspension absorption capacity and thermal resistance of the sludge. In G. Wozny & Ł. Hady (Eds.), Process Engineering and Chemical Plant Design 2011, (pp. 103–113). Berlin: Universitätsverlag der TU Berlin.Search in Google Scholar

31. Wójtowicz, R., Lipin, A.A. & Talaga, J. (2014). On the possibility of using of different turbulence models for modeling flow hydrodynamics and power consumption in mixing vessels with turbine impellers. Theor. Found. Chem. Eng. 48 (4), 360–375. DOI: 10.1134/S0040579514020146.10.1134/S0040579514020146Open DOISearch in Google Scholar

32. Kamieński, J. & Wójtowicz, R. (2001). Drop size during dispersion of two immiscible liquids in a vibromixer. Chem. Process Eng. 22(3C), 597–602 (in Polish).Search in Google Scholar

33. Wójtowicz, R. (2014). Choice of an optimal agitated vessel for the drawdown of floating solids. Ind. Eng. Chem. Res. 53 (36), 13989–14001. DOI: 10.1021/ie500604q, 53 13989–14001.10.1021/ie500604q,531398914001Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering