Open Access

Cytotoxicity and genotoxicity of GO-Fe3O4 hybrid in cultured mammalian cells


Cite

1. Urbas, K., Aleksandrzak, M., Jedrzejczak, M., Jedrzejczak, M., Rakoczy, R., Chen, X. & Mijowska, E. 2014. Chemical and magnetic functionalization of graphene oxide as a route to enhance its biocompatibility. Nanoscale Res. Lett. 9, 656. DOI: 10.1186/1556-276X-9-656.10.1186/1556-276X-9-656427367625593549Search in Google Scholar

2. Lim, H.M., Huang, N.M., Lim, S.S., Harrison, I. & Chia, C.H. 2011. Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int J Nanomed. 6, 1817-1823. DOI: 10.2147/IJN.S23392.10.2147/IJN.S23392317304621931479Search in Google Scholar

3. Wang, K., Ruan, J., Song, H., Zhang, J., Wo, Y., Guo, S. & Cui, D. 2011. Biocompatibility of graphene oxide. Nanoscale Res. Lett. 6, 8-16. DOI: 10.1007/s11671-010-9751-6.10.1007/s11671-010-9751-6321222827502632Search in Google Scholar

4. Balandin, A.A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569-581. DOI: 10.1038/nmat3064.10.1038/nmat306421778997Search in Google Scholar

5. Chung, I.M., Rahuman, A.A., Marimuthu, S., Kirthi, A.V., Anbarasan, K. & Govindasamy, R. 2015. An investigation of the cytotoxicity and caspase-mediates apoptotic effect of green synthesized zinc oxide nanoparticels using Eclipta prostrata on human liver carcinoma cells. Nanomaterials 5, 1317-1330. DOI: 10.3390/nano5031317.10.3390/nano5031317530464328347066Search in Google Scholar

6. Gurunathan, S., Raman, J., Malek, S.N.A., John, P.A. &Vikineswary, S. 2013. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int. J. Nanomed. 8, 4399-4413. DOI: 10.2147/IJN.S51881.10.2147/IJN.S51881383332324265551Search in Google Scholar

7. Bai, L.Z., Zhao, D.L., Xu, Y., Zhang, J.M., Gao, Y.L., Zhao, L.Y., Tang, J.T. 2012. Inductive heating property of graphene oxide-Fe3O4 nanoparticels hybrid in an AC magnetic fi eld for localized hyperthermia. Mater. Lett. 68, 399-401. DOI: 10.1016/j.matlet.2011.11.013.10.1016/j.matlet.2011.11.013Search in Google Scholar

8. Yang, J.H., Ramaraj, B. & Yoon, K.R. 2014. Preparation and characterization of superparamagnetic graphene oxide nanohybrids anchored with Fe3O4 nanoparticles. J. All. Compd. 583, 128-133. DOI: 10.1016/j.jallcom.2013.08.152.10.1016/j.jallcom.2013.08.152Search in Google Scholar

9. Lammel, T., Boisseaux, P., Fernández-Cruz, M.L., Navas, J.M. 2013. Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part Fibre Toxicol 10, 27. DOI: 10.1186/1743-8977-10-27.10.1186/1743-8977-10-27373419023849434Search in Google Scholar

10. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. & Tour, J.M. 2010. Improved synthesis of graphene oxide. ACS Nano 4, 4806. DOI: 10.1021/nn1006368.10.1021/nn100636820731455Search in Google Scholar

11. Johnsen, A.R., Bendixen, K. & Karlson, U. 2002. Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1. Appl. Environ. Microbiol. 68, 2683-2689. DOI: 10.1128/ AEM.68.6.2683-2689.2002.Search in Google Scholar

12. Surrallés, J., Xamena, N., Creus, A., Catalán, J., Norppa, H., Marcos, R. 1995. Induction of micronuclei by fi ve pyrethroid insecticides in whole-blood and isolated human lymphocyte cultures. Mutat Res. 341, 169-184. DOI: 10.1016/0165-1218(95)90007-1.10.1016/0165-1218(95)90007-1Search in Google Scholar

13. Lindberg, H.K., Falck, G.C.M., Suhonen, S., Vippola, M., Vanhal, E., Catalán, J., Savolainen, K. & Norppa, H. 2009. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofi bres in human bronchial epithelial cells in vitro. Toxicol Lett. 186, 166-173. DOI: 10.1016/j.toxlet.2008.11.019.10.1016/j.toxlet.2008.11.019Search in Google Scholar

14. Mornet, S., Vasseur, S., Grasset, F. & Duguet, E. 2014. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161-2175. DOI: 10.1039/B402025A.10.1039/b402025aSearch in Google Scholar

15. Urbas, K., Jedrzejczak-Silicka, M., Rakoczy, R., Zaborski, D. & Mijowska, E. 2016. Effect of GO-Fe3O4 and rotating magnetic fi eld on cellular metabolic activity of mammalian cells. J. Biomater. Appl. 30, 1392-406. DOI: 10.1177/0885328216628762.10.1177/0885328216628762Search in Google Scholar

16. Dobson, J. 2006. Magnetic nanoparticles for drug delivery. Drug. Dev. Res. 67, 55-60. DOI: 10.1016/S1748-0132(07)70084-1.10.1016/S1748-0132(07)70084-1Search in Google Scholar

17. Chen, W., Yi P., Zhang, Y., Zhang, L., Deng, Z., Zhang, Z. 2011. Composites of aminodextran-coated Fe3O4 nanopartilces and graphene oxide for cellular magnetic resonance imaging. ACS Appl. Mater. Interf. 3. 4085-4091. DOI: 10.1021/am2009647.10.1021/am200964721882840Search in Google Scholar

18. AshaRani, P.V., Hande, M.P. & Valiyaveettil, S. 2009. Antiproliferative activity of silver nanoparticles. BMC Cell. Biol. 10, 65. DOI: 10.1186/1471-2121-10-65.10.1186/1471-2121-10-65275991819761582Search in Google Scholar

19. Javed, M., Saquib, Q., Azam, A. & Naqvi, S.A.H. 2009. Zinc oxide nanoparticels-induced DNA damage in human lymphocytes. Int. J. Nanopart. 2, 402-415. DOI: 10.1504/ IJNP.2009.028775.Search in Google Scholar

20. Kazmirova, A., Magdolenova, Z., Barancokova, M., Staruchova, M., Volkovova, K. & Dusinksa, M. 2012. Genotoxicity testing of PLGA-PEO nanoparticles in TK6 cells by the comet assay and the cytokinesis-block micronucleus assay. Mutat Res. 748, 42-47. DOI: 10.1016/j.mrgentox.2012.06.012.10.1016/j.mrgentox.2012.06.01222814198Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering