Open Access

A facile and effective method for preparation of 2.5-furandicarboxylic acid via hydrogen peroxide direct oxidation of 5-hydroxymethylfurfural


Cite

1. Lichtenthaler, F.W. & Peters, S. (2004). Carbohydrates as green raw materials for the chemical industry. Comptes. Rendus. Chimie. 7, 65-90. DOI: 10.1016/j.crci.2004.02.002.10.1016/j.crci.2004.02.002Search in Google Scholar

2. Siankevich, S., Savoglidis, G., Fei, Z., Laurenczy, G., Alexander, DTL. & Yan, N., et al. (2014). A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions. J. Catal. 315, 67-74. DOI: 10.1016/j.jcat.2014.04.011.10.1016/j.jcat.2014.04.011Search in Google Scholar

3. Corma, A., Iborra, S. & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411-2502. DOI: 10.1021/cr050989d.10.1021/cr050989dSearch in Google Scholar

4. Chheda, J.N., Huber, G.W. & Dumesic, J.A. (2007). Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. 46, 7164-7183. DOI: 10.1002/anie.200604274.10.1002/anie.200604274Search in Google Scholar

5. Gandini, A. & Belgacem, M.N. (1997). Furans in polymer chemistry. Prog. Polym. Sci. 22, 1203-1379.10.1016/S0079-6700(97)00004-XSearch in Google Scholar

6. Moreau, C., Belgacem, M.N. & Gandini, A. (2004). Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top. Catal. 27, 11-30. DOI: 10.1023/B:TOCA.0000013537.13540.0e.10.1023/B:TOCA.0000013537.13540.0eSearch in Google Scholar

7. Davis, S.E., Houk, L.R., Tamargo, E.C., Datye, A.K. & Davis, R.J. (2011). Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catal. Today. 160, 55-60. DOI: 10.1016/j.cattod.2010.06.004.10.1016/j.cattod.2010.06.004Search in Google Scholar

8. Boisen, A., Christensen, T.B., Fu, W., Gorbanev, Y.Y., Hansen, T.S. & Jensen, J.S., et al. (2009). Process integration for the conversion of glucose to 2,5-furandicarboxylic acid. Chem. Eng. Res. Des. 87, 1318-1327. DOI: 10.1016/j.cherd.2009.06.010.10.1016/j.cherd.2009.06.010Search in Google Scholar

9. Jain, A., Jonnalagadda, S.C., Ramanujachary, K.V. & Mugweru, A. (2015). Selective oxidation of 5-hydroxymethyl- -2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst. Catal. Commun. 58, 179-182. DOI: 10.1016/j. catcom.2014.09.017.Search in Google Scholar

10. Su, Y., Brown, H.M., Huang, X., Zhou, X., Amonette, J.E. & Zhang, Z.C. (2009). Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. Appl. Catal. A: Gen. 361, 117-122. DOI: 10.1016/j. apcata.2009.04.002.Search in Google Scholar

11. Moreau, C., Durand, R., Raziglade, S., Duhamet, J., Faugeras, P. & Rivalier, P., et al. (1996). Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl. Catal. A: Gen. 145, 211-224. DOI: 10.1016/0926-860X(96)00136-6.10.1016/0926-860X(96)00136-6Search in Google Scholar

12. Chheda, J.N., Leshkov, R.Y. & Dumesic, J.A. (2007). Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green. Chem. 9, 342-350. DOI: 10.1039/b611568c.10.1039/B611568CSearch in Google Scholar

13. Gandini, A., Silvestre, A.J.D., Neto, C.P., Sousa, A.F. & Gomes, M. (2009). The furan counterpart of poly(ethylene terephthalate): an alternative material based on renewable resources. J. Polym. Sci. 47, 295-298. DOI: 10.1002/pola.23130.10.1002/pola.23130Search in Google Scholar

14. Jiang, M., Liu, Q., Zhang, Q., Ye, C. & Zhou, G.Y. (2012). A series of furan-aromatic polyesters synthesized via direct esterifi cation method based on renewable resources. J. Polym. Sci. 50, 1026-1036. DOI: 10.1002/pola.25859.10.1002/pola.25859Search in Google Scholar

15. Ma, J.P., Pang, Y., Wang, M., Xu, J., Ma, H. & Nie, X. (2012). The copylymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials. J. Mater. Chem. 22, 3457-3461. DOI: 10.1039/c2jm15457a.10.1039/c2jm15457aSearch in Google Scholar

16. Werpy, T. & Petersen, G. Report No. NREL/TP-510-35523 (2004).Search in Google Scholar

17. Yu, Z.L., Zhou, J.D., Zhang, J., Huang, K.X., Cao, F. & Wei, P. (2014). Evaluating effects of biobased 2,5-furandicarboxylate esters as plasticizers on the thermal and mechanical properties of poly (vinyl chloride) J. Appl. Polym. 40938, 1-10. DOI: 10.1002/app.40938.10.1002/app.40938Search in Google Scholar

18. Verdeguer, P., Merat, N. & Gaset, A. (1993). Oxydation catalytique du HMF en acide 2,5-furane dicarboxylique. J. Mol. Catal. 85, 327-344. DOI: 10.1016/0304-5102(93)80059-4.10.1016/0304-5102(93)80059-4Search in Google Scholar

19. Casanova, O., Iborra, S. & Corma, A. (2009). Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. Chem. Sus. Chem. 2, 1138-1144. DOI: 10.1002/cssc.200900137.10.1002/cssc.200900137Search in Google Scholar

20. Gorbanev, Y.Y., Kegnæs, S. & Riisager, A. (2011). Selective aerobic oxidation of 5-Hydroxymethylfurfural in water over solid ruthenium hydroxide catalysts with magnesium -based supports. Catal. Lett. 141, 1752-1760. DOI: 10.1007/ s10562-011-0707-y.10.1007/s10562-011-0707-ySearch in Google Scholar

21. Zhang, Z.H. & Deng, K.J. (2015). Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives. ACS. Catal. 5, 6529-6544. DOI: 10.1021/acscatal.5b01491.10.1021/acscatal.5b01491Search in Google Scholar

22. Partenheimer, W. & Grushin, V.V. (2001). Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. Unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal=bromide catalysts. Adv. Synth. Catal. 343, 102-111. DOI: 10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-Q.10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-QSearch in Google Scholar

23. Saha, B., Dutta, S. & Abu-Omar, M.M. (2012). Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts. Catal. Sci. Technol. 2, 79-81. DOI: 10.1039/c1cy00321f.10.1039/C1CY00321FSearch in Google Scholar

24. Miura, T., Kakinuma, H., Kawano, T. & Matsuhisa, H. (2008). Method for producing furan-2,5-dicarboxylic acid. UK Patent 7411078.Search in Google Scholar

25. Li, S., Su, K.M., Li, Z.H. & Cheng, B. (2016). Selective oxidation of 5-hydroxymethylfurfural with H2O2 catalyzed by a molybdenum complex. Green. Chem. 18, 2122-2128. DOI: 10.1039/c5gc01991e.10.1039/C5GC01991ESearch in Google Scholar

26. Duke, F.R. & Haas, T.W. (1961). The homogeneous base-catalyzed decomposition of hydrogen peroxide. J. Phys. Chem. 65, 304-306. DOI: 10.1021/j100820a028.10.1021/j100820a028Search in Google Scholar

27. Sato, K., Hyodo, M., Takagi, J., Aoki, M. & Noyori, R. (2000). Hydrogen peroxide oxidation of aldehydes to carboxylic acids: an organic solvent-, halide- and metal-free procedure. Tetrahedron. Lett. 41, 1439-1442. DOI: 10.1016/ S0040-4039(99)02310-2.10.1016/S0040-4039(99)02310-2Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering