Open Access

Photocatalytic removal of reactive yellow 145 dye from simulated textile wastewaters over supported (Co, Ni)3O4/Al2O3 co-catalyst


Cite

1. Iino, K., Kitano, M., Takeuchi, M., Matsuoka, M. & Anpo M. (2006). Design and development of second generation titration oxide photocatalyst materials operating under visible light irradiation by applying advanced ion-engineering techniques. Current Appl. Physics. 6(6), 982-986. DOI: 10.1016/j.cap.2005.07.002.10.1016/j.cap.2005.07.002Search in Google Scholar

2. Tichonovas, M., Krugly, E., Racys, V., Hippler, R., Kauneliene, V., Stasiulaitiene, I. & Martuzevicius D. (2013). Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment. Chem. Eng. J. 229, 9-19. DOI: 10.1016/j.cej.2013.05.095.10.1016/j.cej.2013.05.095Search in Google Scholar

3. Corro, G., Vazquz, O. & Fierro. J. (2005). Strong improvement on CH4 oxidation over Pt/γ-Al2O3 catalysts, Catalysis. Communications 6(4), 287-292. DOI: 10.1016/j. catcom.2005.01.012.Search in Google Scholar

4. Cuchillo, O., Lopez, A., Carrillo, L., Hernandez, A., Martinez, L. & Lee S. (2010). Synthesis of TiO2 using different hydrolysis catalysts and doped with Zn for effi cient degradation of aqueous phase pollutants under UV light. Res. Chem.Intermed. 36, 103-113. DOI: 10.1007/s11164-010-0119-4.10.1007/s11164-010-0119-4Search in Google Scholar

5. Song, Y. & Bai, J. (2010). TiO2-assisted photodegradatoin of Direct Blue 78 in aqueous solution in sunlight. Water Air Soil Pollut. 213(1), 311-317. DOI: 10.1007/ s11270-010-0386-0.10.1007/s11270-010-0386-0Search in Google Scholar

6. Wang, S. (2008). A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigm. 76(3), 714-720. DOI: 10.1016/j. dyepig.2007.01.012.Search in Google Scholar

7. Khehra, M., Saini, H., Sharma, D., Chadha, B. & Chimni S. (2005). Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes. Water Res. 39(20), 5135-5141. DOI: 10.1016/j. watres.2005.09.033.Search in Google Scholar

8. Robinson, T., McMullan, G., Marchant, R. & Nigam, P. (2001). Remediation of dyes in textile effl uent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology. 77(3), 247-255. DOI: 10.1016/S0960-8524(00)00080-8.10.1016/S0960-8524(00)00080-8Search in Google Scholar

9. Zamora, P., Kunz, A., Moraes, S., Pelegrini, R., Molerio, P., Reyes, J. & Duran, N. (1999). Chemosphere. Degradation of Reactive Dyes I. A Comparative Study of Ozonation, Enzymatic and Photochemical Processes. Chemosphere 38(4), 835-852. DOI: 10.1016/S0045-6535(98)00227-6.10.1016/S0045-6535(98)00227-6Search in Google Scholar

10. Ladakowicz, L., Solecka, M. & Zylla, R. (2001). Biodegradation, decolourisation and detoxifi cation of textile wastewater enhanced by advanced oxidation processes, J. Biotech. 89(2, 3), 175-184. DOI: 10.1016/S0168-1656(01)00296-6.10.1016/S0168-1656(01)00296-6Search in Google Scholar

11. Georgiou, D., Melidis, P., Aivasidis, A. & Gimouhopoulos, K. (2002). Degradation of azo-reacti ve dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes Pigm. 52, 69-78. DOI: 10.1016/S0143-7208(01)00078-X.10.1016/S0143-7208(01)00078-XSearch in Google Scholar

12. Farrauto, R. & Bartholomew C. (1997). Fundamentals of Industrial Catalytic Processes, Chapman & Hall, Kluwer Academic Publishers, London.Search in Google Scholar

13. Duprez, D., Pereira, P., Barbier, J. & Maurel R. (1980). Catalyst deactivation in toluene steam dealkylation. React. Kin. Catal. Let. 13(3), 217-223. DOI: 10.1007/BF02068569.10.1007/BF02068569Search in Google Scholar

14. Pourbaix, M. (1974). Atlas of Electrochemical Equilibrium, Pergamum Press, New York, Translated from French by J.A. Franklin, USA.Search in Google Scholar

15. Pal, J. & Chauhan, P. (2010). Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Mater. Character. 61(5), 575-579. DOI: 10.1016/j.matchar.2010.02.017.10.1016/j.matchar.2010.02.017Search in Google Scholar

16. Sujia, T.T., Hamagamia, T., Kawamurab, T., Yamakia, J. & Masaharu, T. (2005). Laser ablation of cobalt and cobalt oxides in liquids: infl uence of solvent on composition of prepared nanoparticles. Japan Appl. Surf. Sci. 243(30), 214-219. DOI: 10.1016/j.apsusc.2004.09.065.10.1016/j.apsusc.2004.09.065Search in Google Scholar

17. Hussein, F. (2012). Comparison between Solar and Artificial Photocatalytic Decolorization of Textile Industrial Wastewater. Int. J. Photoener. 2012, 1-10. doi. org/10.1155/2012/793648.10.1155/2012/793648Search in Google Scholar

18. Hoffmann, R., Scot Martin, T., Wonyong, C. & Bahnemann, W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95(1), 69-96. DOI: 10.1021/cr00033a004.10.1021/cr00033a004Search in Google Scholar

19. Hussain, B., kashif, D., Ahmad, B., Zubair, A., Yousaf, A., Matloob, I., Muhammad, U., Muhmmmad, Z. & Asim M. (2013). Degradation Study of C.I Reactive Yellow 145 by Advanced Oxidation Process. Asian J. Chem. 25 (15), 8668-8672. DOI: 10.14233/ajchem.2013.14996.10.14233/ajchem.2013.14996Search in Google Scholar

20. Zofi a, L., Narkiewicz, U. & Arabczyk, W. (2013). Cobalt-based Catalysts for Ammonia Decomposition. Materials 6(6), 2400-2409. DOI: 10.3390/ma6062400.10.3390/ma6062400Search in Google Scholar

21. Haznan, A., Byoung Sung, A., Chang Soo, K. & Kye Sang, Y. (2007). Preparation and Characterization of MgO− CeO2 Mixed Oxide Catalysts by Modifi ed Coprecipitation Using Ionic Liquids for Dimethyl Carbonate Synthesis. Ind. Engine.Chem. Res. 46(24), 7936-7941. DOI: 10.1021/ ie070528d.10.1021/ie070528dSearch in Google Scholar

22. Sanchai, K. & Hang, H. (2011). Study of NiO -CoO and Co3O4 -Ni3O4 Solid Solutions in Multiphase Ni -Co -O Systems. Ind. Engine. Chem. Res. 50(4), 2015-2020. DOI: 10.1021/ie101249r.10.1021/ie101249rSearch in Google Scholar

23. Farhadi, S., Safabakhsh, J. & Zaringhadam, P. (2013). Synthesis, characterization, and investigation of optical and magnetic properties of cobalt oxide (Co3O4) nanoparticles. J. Nanos. Chem. 69(3), 68135-465. DOI: 10.1186/2193-8865-3-69.10.1186/2193-8865-3-69Search in Google Scholar

24. Ni, Y., Ge, X., Zhang, Z., Liu, H., Zhu, Z. & Ye Q. (2001). A simple reduction-oxidation route to prepare Co 3 O 4 nanocrystals. Mater. Res. Bull. 36(13-14), 2383-2387. DOI: 10.1016/S0025-5408(01)00739-5.10.1016/S0025-5408(01)00739-5Search in Google Scholar

25. Wilson, S. (1979). The dehydration of boehmite, γ-AlOOH, to γ-Al2O3. J. Sol. State Chem. 30(2), 247-255. DOI: 10.1016/0022-4596(79)90106-3.10.1016/0022-4596(79)90106-3Search in Google Scholar

26. Thirumalairajan, S., Girija, K., Hebalkar,Y., Mangalaraj, D., Viswanathana, C. & Ponpandian, N. (2013). Shape evolution of perovskite LaFeO3 nanostructures: a systematic investigation of growth mechanism properties and morphology dependent photocatalytic activities. RSC Advances 3(20), 7549-7561. DOI: 10.1039/C3RA00006K.10.1039/c3ra00006kSearch in Google Scholar

27. Jing, X., Song, S., Wang, J., Ge, L., Jamil, S., Liu, Q., Mann, T., He, Y., Zhang, M., Wei, H. & Liu, L. (2012). Solvothermal synthesis of morphology controllable CoCO-3and their conversion to Co3O4for catalytic application. Pow. Technol. 21, 624-628. DOI: 10.1016/j.powtec.2011.11.040.10.1016/j.powtec.2011.11.040Search in Google Scholar

28. Wang, G., Cao, D., Yin, C., Gao, Y., Yin, J. & Cheng, L. (2013). Facile synthesis of porous (Co, Mn)3O4 nanowires free-standing on a Ni foam and their catalytic performance for H2O2 electroreduction. J. Mater. Chem. A. 1 (5), 1669-1676. DOI: 10.1039/C2TA00219A.10.1039/C2TA00219ASearch in Google Scholar

29. Yamamoto, S., Matsuoka, O., Fukada, I., i Ashida, Y., Honda, T. & Yamamoto, N.(1996). Characterization of pillared montmorillonites with the atomic force microscope (AFM). Journal of Catalysis. 159( 2), 401-409. DOI: 10.1006/ jcat.1996.0103.10.1006/jcat.1996.0103Search in Google Scholar

30. Liu Affi liated with Civil and Environmental Engineering School, University of Science and Technology Beijing National Key State Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, X., Feng, Y. & Li, H. (2011). Preparation of basic magnesium carbonate and its thermal decomposition kinetics in air. J. Cent. South Univ. Technol. 18(6), 1865-1870. DOI: 10.1007/s11771-011-0915-z.10.1007/s11771-011-0915-zSearch in Google Scholar

31. Kuśmierek., K.A. & Świątkowski A. (2015). Removal of chlorophenols from aqueous solutions by sorption onto walnut,pistachio and hazelnut shells. Pol. J. Chem. Technol. 17(1), 23-31. DOI: 10.1515/pjct-2015-0005, March 2015.10.1515/pjct-2015-0005Search in Google Scholar

32. Ferrero, F. (2007). Dye removal by low cost adsorbents: hazelnut shells in comparison with wood sawdust. J. Haz. Mater. 142(1), 144-152. DOI: 10.1016/j.jhazmat.2006.07.072.10.1016/j.jhazmat.2006.07.072Search in Google Scholar

33. Monika, S. (2008). Advance oxidation Processes For The Degradation Of Pesticides, Msc Thesis, Department of Biotechnology & Environmental Sciences. Thapar University Patiala, Malaysia.Search in Google Scholar

34. Wang, C., Lee, K., Lyu, D. & Juang, L. (2008). Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes Pigm. 76(3), 817-824. DOI: 10.1016/j.dyepig.2007.02.004.10.1016/j.dyepig.2007.02.004Search in Google Scholar

35. Hussein, F. & Halbus, A. (2012). Rapid Decolorization of Cobalamin. Intern. J. Photoener. 2012, 1-9. DOI: 10.1155/2012/495435.10.1155/2012/495435Search in Google Scholar

36. Narendra, T., Oza, A. & Ingale, S. (2014). TiO2 as an Oxidant for Removal of Chemical Oxygen Demand from Sewage. Univ. J. Environ. Res. Technol. 4(3), 165-171. www.environmentaljournal.orgSearch in Google Scholar

37. Daneshvar, N., Salari, D. & Khataee, A. (2003). Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J. Photochem. Photobiol. A: Chemistry 157(1), 111-116. DOI: 10.1016/S1010-6030(03)00015-7.10.1016/S1010-6030(03)00015-7Search in Google Scholar

38. Kumar, K., Navjeet, K. & Sukhmehar, S. (2009). Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts. Nano. Res. Let. 4(7), 709-716. DOI: 10.1007/s11671-009-9300-3.10.1007/s11671-009-9300-3Search in Google Scholar

39. Daneshvar, N., Aber, S., Seyed Dorraji, M., Khataee, A. & Rasoulifard, M. (2007). Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Separat. Purif. Technol. 58(1), 91-98. DOI:10.1016/j. seppur.2007.07.016.Search in Google Scholar

40. Wang, H., Xie, C., Zhang, W., Cai, S., Yang, Z. & Gui Y. (2007). Comparison of dye degradation effi ciency using ZnO powders with various size scales. J. Hazard. Mater. 141(3), 645-652. http://dx.doi.org/10.1155/2012/329082.10.1155/2012/329082Search in Google Scholar

41. El-Bahy, Z., Ismail, A. & Mohamed, R. (2009 ).Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). Journal of Hazardous Materials. 166(1), 138-143. DOI: 10.1016/j.jhazmat.2008.11.022.10.1016/j.jhazmat.2008.11.022Search in Google Scholar

42. Ludwig, C., Byrne, H., Stokke, J., Chadik, P. & Mazyck, M. (2011). Performance of Silica-Titania Carbon Composites for Photocatalytic Degradation of Gray Water. J. Environ.Engine. 137(1), 38-46. DOI.org/10.1061/(ASCE) EE.1943-7870.0000301.10.1061/(ASCE)EE.1943-7870.0000301Search in Google Scholar

43. Lizama, C., Freer, J., Baeza, J. & Mansilla, H. (2002). Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions. Catalysis. Today 76(2), 235-246. DOI: http://dx.doi.org/10.1016/S0920-5861(02)00222-510.1016/S0920-5861(02)00222-5Search in Google Scholar

44. Movahedi, M., Mahjoub, A. & Janitabar-Darzi, S. (2009). Photodegradation of Congo red in aqueous solution on ZnO as an alternative catalyst to TiO. J. Iranian Chem. Soc. 6(3), 570-577. DOI: 10.1007/BF03246536.10.1007/BF03246536Search in Google Scholar

45. Yu Chen, C. (2009). Photocatalytic Degradation of Azo Dye Reactive Orange 16 by TiO2. Water Air Soil Pollut. 202(1), 335-342. DOI: 10.1007/s11270-009-9980-4.10.1007/s11270-009-9980-4Search in Google Scholar

46. Hermann, J. (1999). Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today. 53 (1), 115-129. DOI: 10.1016/S0920-5861(99)00107-8.10.1016/S0920-5861(99)00107-8Search in Google Scholar

47. Soares, E., Lansarin, M. & Brazilian, C. ( 2007). A study of process variablse for the photocatalytic degradation of rahodamine B. Braz. J. Chem. Engine. 24 (1), 29-36. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-6632200700010000310.1590/S0104-66322007000100003Search in Google Scholar

48. Hussein, F., Obies, M. & Drea, A. (2010). Photocatalytic decolorization of bismarck brown R by suspension of titanium dioxide. Inter. J. Chem. Sci. 8(4), 2763-2774. www.sadgurupublications.com/.../2010/89_1176_8(4)2010Search in Google Scholar

49. Attia, A., Kadhim, S. & Hussein, F. (2008). Photocatalytic Degradation of Textile Dyeing Wastewater Using Titanium Dioxide and Zinc Oxide. E-J. Chem. 5(8), 219-223. http://www.e-journals.net10.1155/2008/876498Search in Google Scholar

50. Noureddine, B., Samir, Q., Ali, A., Abderrahman, N. & Yhya, A. (2010) Photoctalytic degradation of an azo reactive dye , Reactive yellow84, in water rusing an inindustrilal titanium dioxide coated media. Arabian J. Chem. 3, 279-283. Search in Google Scholar

51. Chakrabarti, S. & Dutta, B. (2004). Photocatalytic degradation of model textile dyes in waste water using ZnO as semiconductor catalyst. J. Hazard. Mater. 112(3), 269-278. DOI: 10.1016/j.jhazmat.2004.05.013.10.1016/j.jhazmat.2004.05.01315302448Search in Google Scholar

52. Treybal, R. (1968). Mass Transfer Operations, 2nd ed, McGraw Hill, New York, USA.Search in Google Scholar

53. Al-Khatib, L., Fraige, F., Al-Hwaiti, M. & Al-Khashman, O. (2012). Adsorption from aqueous solution on to natural and acid activated bentonite. Am. J. Environ. Sci. 8(5), 510-522. DOI: 10.3844/ajessp.2012.510.522.10.3844/ajessp.2012.510.522Search in Google Scholar

54. Sharma, R., Goyal, K., Chattree, A.R., Baggi, T. & Gupta, A. (2013). Comparative Analysis of Inkjet Printer Inks Extracted from Printed Documents by FT-IR Spectrophotometry. IOSR J. Appl. Chem. 5(3). 36-41. www.iosrjournals.org 10.9790/5736-0533641Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering