Open Access

Equilibrium and kinetic studies of sorption of 2.4-dichlorophenol onto 2 mixtures: bamboo biochar plus calcium sulphate (BC) and hydroxyapatite plus bamboo biochar plus calcium sulphate (HBC), in a fluidized bed circulation column


Cite

1. Tan, I.A.W, Ahmad, A.L. & Hameed, B.H. (2009). Adsorption isotherms, kinetics, thermod ynamics and desorption studies of 2.4.6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J. Hazard. Mater. 164(2–3), 473–482. DOI: 10.1016/j.jhazmat.2008.08.025.10.1016/j.jhazmat.2008.08.025Search in Google Scholar

2. Gao, R. & Wang, J. (2007). Effects of pH and temperature on isotherm parameters of chlorophenols biosorption to anaerobic granular sludge. J. Hazard. Mater. 145(3), 398–403. DOI: 10.1016/j.jhazmat.2006.11.036.10.1016/j.jhazmat.2006.11.036Search in Google Scholar

3. Hameed, B.H., Chin, L.H. & Rengaraj, S. (2008). Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust. Desalination 225(1–3), 185–198. DOI: 10.1016/j.desal.2007.04.095.10.1016/j.desal.2007.04.095Search in Google Scholar

4. Aksu, Z. & Akpınar, D. (2000). Modelling of simultaneous biosorption of phenol and nickel(II) onto dried aerobic activated sludge. Sep. Purif. Technol. 21(1–2), 87–99. DOI: 10.1016/S1383-5866(00)00194-5.10.1016/S1383-5866(00)00194-5Search in Google Scholar

5. Xuequan, Z., Xiankai, W., Huixiang, S. & Dahui, W. (2009). Adsorption of 2.4-dichlorophenol from aqueous solution onto microwave modified activated carbon: Kinetics and equilibrium. Trans. Tianjin Univ. 15(6), 408–414. DOI: 10.1007/s12209-009-0071-9.10.1007/s12209-009-0071-9Search in Google Scholar

6. Hamdaoui, O., Naffrechoux, E., Suptil, J. & Fachinger, C. (2005). Ultrasonic desorption of p-chlorophenol from granular activated carbon. Chem. Eng. J. 106(2), 153–161. DOI: 10.1016/j.cej.2004.10.010.10.1016/j.cej.2004.10.010Search in Google Scholar

7. Yan, M., Naiyun, G., Wenhai, C. & Cong, L. (2013). Removal of phenol by powdered activated carbon adsorption. Front. Environ. Sci. & Eng. 7(2), 158–165. DOI: 10.1007/s11783-012-0479-7.10.1007/s11783-012-0479-7Search in Google Scholar

8. Sarkar, M. & Acharya, P.K. (2006). Use of fly ash for the removal of phenol and its analogues from contaminated water. J. Waste Manage. 26(6), 559–570. DOI: 10.1016/j.wasman.2005.12.016.10.1016/j.wasman.2005.12.01616513337Search in Google Scholar

9. Abdel-Ghani, N.T., El-Chaghaby, G.A., Farag, S. & Helal, F.S. (2015). Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J. Adv. Res. 6(3), 405–415. DOI: 10.1016/j.jare.2014.06.001.10.1016/j.jare.2014.06.001452254626257938Search in Google Scholar

10. Wang, J.P., Feng, H.M. & Yu, H.Q. (2007). Analysis of adsorption characteristics of 2.4-dichlorophenol from aqueous solutions by activated carbon fiber. J. Hazard. Mater. 144(1–2), 200–207. DOI: 10.1016/j.jhazmat.2006.10.003.10.1016/j.jhazmat.2006.10.00317118548Search in Google Scholar

11. Mohd Din, A.T., Hameed, B.H. & Ahmad, A.L. (2009). Batch adsorption of phenol onto physiochemical-activated coconut shell. J. Hazard. Mater. 161(2–3), 1522–1529. DOI: 10.1016/j.jhazmat.2008.05.009.10.1016/j.jhazmat.2008.05.009Search in Google Scholar

12. Lin, K., Pan, J., Chen, Y., Cheng, R. & Xu, X. (2009). Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J. Hazard. Mater. 161(1), 231–240. DOI: 10.1016/j.jhazmat.2008.03.076.10.1016/j.jhazmat.2008.03.076Search in Google Scholar

13. Downie, A., Crosky, A. & Munroe, P. (2009). Physical properties of biochar. In: Lehmann, J., Joseph, S. (Eds.). Biochar for environmental management science and technology (13–32). London. UK, Earthscan.Search in Google Scholar

14. Catalano, P.J., Insley, G.M. & Hess, B. (2007). An in-vivo comparative analysis of the intra-operative properties of injectable calcium phosphate/calcium sulphate based bone cements. Key Eng. Mater. 330–332, 799–802. DOI: 10.4028/www.scientific.net/KEM.330-332.799.10.4028/www.scientific.net/KEM.330-332.799Search in Google Scholar

15. Evaniew, N., Tan, V., Parasu, N., Jurriaans, E., Finlay, K., Deheshi, B. & Ghert, M. (2013). Use of a calcium sulphate-calcium phosphate synthetic bone graft composite in the surgical management of primary bone tumors. Orthopedics 36(2), 216–222. DOI: 10.3928/01477447-20130122-25.10.3928/01477447-20130122-25Search in Google Scholar

16. Del Rio, J.G., Sanchez, P., Morando, P.J., Cicerone, D.S. (2006). Retention of Cd, Zn and Co on hydroxyapatite filters. Chemosphere 64(6), 1015–1020. DOI: 10.1016/j.chemosphere.2006.02.008.10.1016/j.chemosphere.2006.02.008Search in Google Scholar

17. Lin, K., Pan, J., Chen, Y., Cheng, R. & Xu, X. (2008). Adsorption of phenol from aqueous solution by hydroxyapatite nanopowders. Part II: kinetic, equilibrium and thermodynamic studies, The 2nd ICBBE, 16–18 May 2008 (3119–3122). Shanghai, China: IEEE. DOI: 10.1109/ICBBE.2008.1109.10.1109/ICBBE.2008.1109Search in Google Scholar

18. Mowla, D. & Ahmadi, M. (2007). Theoretical and experimental investigation of biodegradation of hydrocarbon polluted water in a three phase fluidized-bed bioreactor with PVC biofilm support. Biochem. Eng. J. 36(2), 147–156. DOI: 10.1016/j.bej.2007.02.031.10.1016/j.bej.2007.02.031Search in Google Scholar

19. Wu, J. & Yu, H.Q. (2006). Biosorption of 2.4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: Isotherms, kinetics and thermodynamics. J. Hazard. Mater. 137(1), 498–508. DOI: 10.1016/j.jhazmat.2006.02.026.10.1016/j.jhazmat.2006.02.026Search in Google Scholar

20. Calace, N., Nardi, E., Petronio, B.M. & Pietroletti, M. (2002). Adsorption of phenols by papermill sludges, Environ. Pollu. 118(3), 315–319. DOI: 10.1016/S0269-7491(01)00303-7.10.1016/S0269-7491(01)00303-7Search in Google Scholar

21. Mall, I.D., Srivastava, V.C. & Agarwal, N.K. (2006). Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash-kinetic study and equilibrium isotherm analyses. Dyes Pigm. 69(3), 210–223. DOI: 10.1016/j.dyepig.2005.03.013.10.1016/j.dyepig.2005.03.013Search in Google Scholar

22. Hanen, N. & Abdelmottaleb, O. (2013). Modeling of the Dynamics Adsorption of Phenol from an Aqueous Solution on Activated Carbon Produced from Olive Stones. Inter. J. Chem. Eng. & Appl. 4(4), 254–261. DOI: 10.7763/IJCEA.2013.V4.306.10.7763/IJCEA.2013.V4.306Search in Google Scholar

23. Zhang, Z.B., Cao, X.H., Liang, P. & Liu, Y.H. (2013). Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. J. Radioanal. Nucl. Chem. 295(2), 1201–1208. DOI: 10.1007/s10967-012-2017-2.10.1007/s10967-012-2017-2Search in Google Scholar

24. Tan, Z., Xiang, J., Su, S., Zeng, H., Zhou, C., Sun, L., Hu, S. & Qiu, J. (2012). Enhanced capture of elemental mercury by bamboo-based sorbents. J. Hazard. Mater. 239–240, 160–166. DOI: 10.1016/j.jhazmat.2012.08.053.10.1016/j.jhazmat.2012.08.053Search in Google Scholar

25. Sathishkumar, M., Binupriya, A.R., Kavitha, D. & Yun, S.E. (2007). Kinetic and isothermal studies on liquid-phase adsorption of 2, 4-dichlorophenol by palm pith carbon. Bioresour. Technol. 98(4), 866–873. DOI: 10.1016/j.biortech.2006.03.002.10.1016/j.biortech.2006.03.002Search in Google Scholar

26. Rengaraj, S., Moon, S.H., Sivabalan, R., Arabindoo, B. & Murugesan, V. (2002). Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Manage. 22(5), 543–548. DOI: 10.1016/S0956-053X(01)00016-2.10.1016/S0956-053X(01)00016-2Search in Google Scholar

27. Ahmaruzzaman, M. & Sharma, D.K. (2005). Adsorption of phenols from wastewater, J. Coll. Inter. Sci. 287(1), 14–24. DOI: 10.1016/j.jcis.2005.01.075.10.1016/j.jcis.2005.01.07515914144Search in Google Scholar

28. Özkaya, B. (2006). Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J. Hazard. Mater. 129(1–3), 158–163. DOI: 10.1016/j.jhazmat.2005.08.025.10.1016/j.jhazmat.2005.08.02516198050Search in Google Scholar

29. Vázquez, I., Iglesias, J.R., Marañón, E., Castrillón, L. & Álvarez, M. (2007). Removal of residual phenols from coke wastewater by adsorption. J. Hazard. Mater. 147(1–2), 395–400. DOI: 10.1016/j.jhazmat.2007.01.019.10.1016/j.jhazmat.2007.01.01917276598Search in Google Scholar

30. Quintelas, C., Sousa, E., Silva, F., Neto, S. & Tavares, T. (2006). Competitive biosorption of ortho-cresol, phenol, chlorophenol and chromium (VI) from aqueous solution by a bacterial biofilm supported on granular activated carbon. Process Biochem. 41(9), 2087–2091. DOI: 10.1016/j.procbio.2006.04.014.10.1016/j.procbio.2006.04.014Search in Google Scholar

31. Wang, S.L., Tzou, Y.M., Lu, Y.H. & Sheng, G. (2007). Removal of 3-chlorophenol from water using rice-straw-based carbon. J. Hazard Mater. 147(1–2), 313–318. DOI: 10.1016/j.jhazmat.2007.01.031.10.1016/j.jhazmat.2007.01.03117276599Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering