Impact of the 2014 Major Baltic Inflow on benthic fluxes of ferrous iron and phosphate below the permanent halocline in the southern Baltic Sea
Article Category: Original research paper
Published Online: Sep 21, 2018
Page range: 275 - 287
Received: Oct 09, 2017
Accepted: Mar 05, 2018
DOI: https://doi.org/10.1515/ohs-2018-0026
Keywords
© 2018 Faculty of Oceanography and Geography, University of Gdańsk, Poland
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The impact of 2014 Major Baltic Inflow (MBI) on ferrous iron (FFe(II)) and phosphate (FPO43–) benthic fluxes was investigated. Sampling took place few months after the MBI, in August 2015, and over one year after the inflow, in February 2016. Materials were collected from three sites (depth of 106–108 m) located in the Gdańsk Deep. Total dissolved iron, Fe(II), phosphate, H2S and sulfate were analyzed in bottom and pore water. Benthic fluxes were estimated using Fick’s first law. All fluxes were directed from sediment. FFe(II) ranged from 0.31 × 10–2 to 1.25 × 10–2 μmol m–2 hr–1 and FPO43– from 1.53 to 2.70 μmol m–2 hr–1. At the deepest site, FPO43– was similar in both seasons, while at two other sites fluxes in August 2015 were 40–50% smaller than in February 2016. The increase in bottom water oxygen after the MBI enhanced Fe(oxyhydr)oxides formation. As a consequence, bottom and pore water concentrations of Fe(II) and FFe(II), decreased. Adsorption of phosphate onto Fe(oxyhydr)oxides resulted in binding of P in surface sediment and lower FPO43– in August 2015. This was particularly evident at the shallowest site. The reductive dissolution of Fe(oxyhydr)oxides and desorption of P during the subsequent months resulted in higher FPO43– in February 2016.