Open Access

Characteristics of the growth rate and lipid production in fourteen strains of Baltic green microalgae


Cite

Agusti, S., Duarte, C.M. & Kalff, J. (1987). Algal cell size and the maximum density and biomass of phytoplankton. Limnology and Oceanography 32(4): 983–986.AgustiS.DuarteC.M.KalffJ.1987Algal cell size and the maximum density and biomass of phytoplanktonLimnology and Oceanography 324 98398610.4319/lo.1987.32.4.0983Search in Google Scholar

Banse, K. (1976). Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size – a review. Journal of Phycology 12(2): 135–140. 10.1111/j.1529-8817.1976.tb00490.xBanseK.1976Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size – a reviewJournal of Phycology12213514010.1111/j.1529-8817.1976.tb00490.xOpen DOISearch in Google Scholar

Bogen, C., Klassen, V., Wichmann, J., La Russa, M., Doebbe, A. et al. (2013). Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Bioresource Technology 133: 622–626.BogenC.KlassenV.WichmannJ.La RussaM.DoebbeA.2013Identification of Monoraphidium contortum as a promising species for liquid biofuel productionBioresource Technology13362262610.1016/j.biortech.2013.01.164Search in Google Scholar

Borowitzka, M.A. (1992). Algal biotechnology products and processes – matching science and economics. Journal of Applied Phycology 4(3): 267–279. 10.1007/BF02161212.BorowitzkaM.A.1992Algal biotechnology products and processes – matching science and economicsJournal of Applied Phycology4326727910.1007/BF02161212Open DOISearch in Google Scholar

Borowitzka, M.A. (2013). Species and Strain Selection. In M.A. Borowitzka & N.R. Mohaeimani (Eds.), Algae for Biofuels and Energy. (pp. 78–90). Dordrecht: Springer Science+Business Media.BorowitzkaM.A.2013Species and Strain SelectionBorowitzkaM.A.MohaeimaniN.R.Algae for Biofuels and Energy7890DordrechtSpringer Science+Business Media10.1007/978-94-007-5479-9Search in Google Scholar

Chabrol, E., & Charonnat, R. (1937). Une nouvelle reaction pour l’etude des lipides l’oleidemie. Presse Méd.ChabrolE.CharonnatR.1937Une nouvelle reaction pour l’etude des lipides l’oleidemiePresse MédSearch in Google Scholar

Courchesne, N.M.D., Parisien, A., Wang, B. & Lan, C.Q. (2009). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology 141(1–2): 31–41. 10.1016/j.jbiotec.2009.02.018.CourchesneN.M.D.ParisienA.WangB.LanC.Q.2009Enhancement of lipid production using biochemical, genetic and transcription factor engineering approachesJournal of Biotechnology1411–2314110.1016/j.jbiotec.2009.02.018Open DOISearch in Google Scholar

Fogg, G.E (1975). Algal Cultures and Phytoplankton Ecology. 2nd edition, The University of Wisconsin Press, Wisconsin.FoggG.E.1975Algal Cultures and Phytoplankton Ecology2ndThe University of Wisconsin PressWisconsinSearch in Google Scholar

Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226(1): 497–509.FolchJ.LeesM.Sloane StanleyG. H.1957A simple method for the isolation and purification of total lipids from animal tissuesJ. Biol. Chem226149750910.1016/S0021-9258(18)64849-5Search in Google Scholar

Grama, B.S., Chader, S., Khelifi, D., Stenuit, B., Jeffryes, C. et al (2014). Characterization of fatty acid and carotenoid production in an Acutodesmus microalga isolated from the Algerian Sahara. Biomass and Bioenergy 69: 265–275. 10.1016/j.biombioe.2014.07.023.GramaB.S.ChaderS.KhelifiD.StenuitB.JeffryesC.2014Characterization of fatty acid and carotenoid production in an Acutodesmus microalga isolated from the Algerian SaharaBiomass and Bioenergy6926527510.1016/j.biombioe.2014.07.023Open DOISearch in Google Scholar

Griffiths, M.J., & Harrison, S.T.L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology 21(5): 493–507. 10.1007/s10811-008-9392-7.GriffithsM.J.HarrisonS.T.L.2009Lipid productivity as a key characteristic for choosing algal species for biodiesel productionJournal of Applied Phycology21549350710.1007/s10811-008-9392-7Open DOISearch in Google Scholar

Griffiths, M.J., van Hille, R.P. & Harrison, S.T.L. (2012). Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. Journal of Applied Phycology 24(5): 989–1001. 10.1007/s10811-011-9723-y.GriffithsM.J.van HilleR.P.HarrisonS.T.L.2012Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditionsJournal of Applied Phycology245989100110.1007/s10811-011-9723-yOpen DOISearch in Google Scholar

Guillard, R.R.L. (1973). Division rates. In E. Stein, J.R. (Ed.), Handbook of Phycological Methods: Culture Methods and Growth Measurements (pp. 289–312). Cambridge: Cambridge University Press.GuillardR.R.L.1973Division ratesE., SteinJ.R.Handbook of Phycological MethodsCulture Methods and Growth Measurements289312CambridgeCambridge University PressSearch in Google Scholar

Guillard, R.R.L. (1975). Culture of Phytoplankton for Feeding Marine Invertebrates. In Culture of Marine Invertebrate Animals (pp. 29–60). Boston, MA: Springer US. 10.1007/978-1-4615-8714-9_3.GuillardR.R.L.1975Culture of Phytoplankton for Feeding Marine InvertebratesCulture of Marine Invertebrate Animals2960Boston, MASpringer US.10.1007/978-1-4615-8714-9_3Open DOISearch in Google Scholar

Harwati, T.U., Willke, T. & Vorlop, K.D. (2012). Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp. Bioresource Technology 121: 54–60. 10.1016/j.biortech.2012.06.098.HarwatiT.U.WillkeT.VorlopK.D.2012Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum spBioresource Technology121546010.1016/j.biortech.2012.06.098Open DOISearch in Google Scholar

Hein, M., Pedersen, M.F. & Sand-Jensen, K. (1995). Size-dependent nitrogen uptake in micro- and macroalgae. Marine Ecology Progress Series 118: 247–253.HeinM.PedersenM.F.Sand-JensenK.1995Size-dependent nitrogen uptake in micro- and macroalgaeMarine Ecology Progress Series11824725310.3354/meps118247Search in Google Scholar

Illman, A.M., Scragg, A.H., & Shales, S.W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology 27(8): 631–635. 10.1016/S0141-0229(00)00266-0.IllmanA.M.ScraggA.H.ShalesS.W.2000Increase in Chlorella strains calorific values when grown in low nitrogen mediumEnzyme and Microbial Technology27863163510.1016/S0141-0229(00)00266-0Open DOISearch in Google Scholar

Khozin-Goldberg, I. (2016). Lipid Metabolism in Microalgae. In M.A. Borowitzka, J. Beardall & J.A. Raven (Eds.), The Physiology of Microalgae (pp. 413–481). Cham: Springer International Publishing. 10.1007/s00299-013-1493-3.Khozin-GoldbergI.2016Lipid Metabolism in MicroalgaeBorowitzkaM.A.BeardallJ.RavenJ.A.The Physiology of Microalgae413481ChamSpringer International Publishing10.1007/s00299-013-1493-323959598Open DOISearch in Google Scholar

Knight, J.A., Anderson, S. & Rawle, J.M. (1972). Chemical Basis of the Sulfo-phospho-vanillin Reaction for Estimating Total Serum Lipids. Clinical Chemistry 18(3): 199–202.KnightJ.A.AndersonS.RawleJ.M.1972Chemical Basis of the Sulfo-phospho-vanillin Reaction for Estimating Total Serum LipidsClinical Chemistry18319920210.1093/clinchem/18.3.199Search in Google Scholar

Kong, W., Song, H., Cao, Y., Yang, H., Hua, S. et al. (2011). The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. African Journal of Biotechnology 10(55): 11620–11630. 10.5897/AJB11.617.KongW.SongH.CaoY.YangH.HuaS.2011The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivationAfrican Journal of Biotechnology1055116201163010.5897/AJB11.617Open DOISearch in Google Scholar

Lam, M.K. & Lee, K.T. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances 30(3): 673–690. 10.1016/j.biotechadv.2011.11.008.LamM.K.LeeK.T.2012Microalgae biofuels: A critical review of issues, problems and the way forwardBiotechnology Advances30367369010.1016/j.biotechadv.2011.11.00822166620Open DOISearch in Google Scholar

Latała, A., Jodłowska, S. & Pniewski, F. (2006). Culture Collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approach. Algological Studies 122(December): 137–154. 10.1127/1864-1318/2006/0122-0137.LatałaA.JodłowskaS.PniewskiF.2006Culture Collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approachAlgological Studies122December13715410.1127/1864-1318/2006/0122-0137Open DOISearch in Google Scholar

Lee, J.Y., Yoo, C., Jun, S.Y., Ahn, C.Y., & Oh, H.M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology 101(1 SUPPL.): S75–S77. 10.1016/j.biortech.2009.03.058.LeeJ.Y.YooC.JunS.Y.AhnC.Y.OhH.M.2010Comparison of several methods for effective lipid extraction from microalgaeBioresource Technology1011S75S7710.1016/j.biortech.2009.03.05819386486Open DOISearch in Google Scholar

Mata, T.M., Martins, A.A., Caetano, N.S., Nio, A., Martins, A.A. et al. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14(1): 217–232. 10.1016/j.rser.2009.07.020.MataT.M.MartinsA.A.CaetanoN.S.NioA.MartinsA.A.2010Microalgae for biodiesel production and other applications: A reviewRenewable and Sustainable Energy Reviews14121723210.1016/j.rser.2009.07.020Open DOISearch in Google Scholar

Metzger, P. & Largeau, C. (2005). Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Applied Microbiology and Biotechnology 66(5): 486–496. 10.1007/s00253-004-1779-z.MetzgerP.LargeauC.2005Botryococcus braunii: A rich source for hydrocarbons and related ether lipidsApplied Microbiology and Biotechnology66548649610.1007/s00253-004-1779-z15630516Open DOISearch in Google Scholar

Miner, B. G., Sultan, S. E., Morgan, S. G., Padilla, D. K., & Relyea, R. A. (2005). Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution 20(12): 685–692. 10.1016/j.tree.2005.08.002.MinerB. G.SultanS. E.MorganS. G.PadillaD. K.RelyeaR. A.2005Ecological consequences of phenotypic plasticityTrends in Ecology & Evolution201268569210.1016/j.tree.2005.08.00216701458Open DOISearch in Google Scholar

Nascimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., Pereira, S.A., Druzian, J.I. et al. (2013). Screening Microalgae Strains for Biodiesel Production: Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria. Bioenergy Research 6(1): 1–13. 10.1007/s12155-012-9222-2.NascimentoI.A.MarquesS.S.I.CabanelasI.T.D.PereiraS.A.DruzianJ.I.2013Screening Microalgae Strains for Biodiesel Production: Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective CriteriaBioenergy Research6111310.1007/s12155-012-9222-2Open DOISearch in Google Scholar

Nielsen, S.L. (2006). Size-dependent growth rates in eukaryotic and prokaryotic algae exemplified by green algae and cyanobacteria: Comparisons between unicells and colonial growth forms. Journal of Plankton Research 28(5): 489–498. 10.1093/plankt/fbi134.NielsenS.L.2006Size-dependent growth rates in eukaryotic and prokaryotic algae exemplified by green algae and cyanobacteria: Comparisons between unicells and colonial growth formsJournal of Plankton Research28548949810.1093/plankt/fbi134Open DOISearch in Google Scholar

Olenina, I., Hajdu, S., Edler, L., Wasmund, N., Busch, S. et al. (2006). Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Balt. Sea Environ. Proc. 106(106), 144 pp.OleninaI.HajduS.EdlerL.WasmundN.BuschS.2006Biovolumes and size-classes of phytoplankton in the Baltic SeaHELCOM Balt. Sea Environ. Proc106106144Search in Google Scholar

Olofsson, M., Lindehoff, E., Frick, B., Svensson, F. & Legrand, C. (2015). Baltic Sea microalgae transform cement flue gas into valuable biomass. Algal Research 11: 227–233. 10.1016/j.algal.2015.07.001.OlofssonM.LindehoffE.FrickB.SvenssonF.LegrandC.2015Baltic Sea microalgae transform cement flue gas into valuable biomassAlgal Research1122723310.1016/j.algal.2015.07.001Open DOISearch in Google Scholar

Patterson, G.M.L., Larsen, L.K. & Moore, R.E. (1994). Bioactive natural products from blue-green algae. Journal of Applied Phycology 6: 151–157.PattersonG.M.L.LarsenL.K.MooreR.E.1994Bioactive natural products from blue-green algaeJournal of Applied Phycology615115710.1007/BF02186069Search in Google Scholar

Schwenk, D., Seppälä, J., Spilling, K., Virkki, A., Tamminen, T. et al. (2013). Lipid content in 19 brackish and marine microalgae: influence of growth phase, salinity and temperature. Aquatic Ecology 47(4): 415–424. 10.1007/s10452-013-9454-z.SchwenkD.SeppäläJ.SpillingK.VirkkiA.TamminenT.2013Lipid content in 19 brackish and marine microalgae: influence of growth phase, salinity and temperatureAquatic Ecology47441542410.1007/s10452-013-9454-zOpen DOISearch in Google Scholar

StatSoft, Inc. (2007). STATISTICA (data analysis software system), version 8.0. www.statsoft.com.StatSoft, Inc.2007STATISTICA (data analysis software system), version 8.0www.statsoft.comSearch in Google Scholar

Stanisz, A. (2007a). Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. Tom 2. Modele liniowe i nieliniowe (pp. 271–314). Kraków: StatSoft Polska Sp.z.o.o. (In Polish).StaniszA.2007aPrzystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. Tom 2. Modele liniowe i nieliniowe271314KrakówStatSoft Polska Sp.z.o.oIn PolishSearch in Google Scholar

Stanisz, A. (2007b). Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. Tom 3. Analizy wymiarowe (pp. 113–161). Kraków: StatSoft Polska Sp.z.o.o. (In Polish).StaniszA.2007bPrzystępny kurs statystykiz z astosowaniem STATISTICA PL na przykładach z medycyny. Tom 3. Analizy wymiarowe113161KrakówStatSoft Polska Sp.z.o.o(In Polish)Search in Google Scholar

Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101(2): 87–96. 10.1263/jbb.101.87.SpolaoreP.Joannis-CassanC.DuranE.IsambertA.2006Commercial applications of microalgaeJournal of Bioscience and Bioengineering1012879610.1263/jbb.101.8716569602Open DOISearch in Google Scholar

Sydney, E.B., da Silva, T.E., Tokarski, A., Novak, A.C., de Carvalho, J.C. et al. (2011). Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy 88(10): 3291–3294. 10.1016/j.apenergy.2010.11.024.SydneyE.B.da SilvaT.E.TokarskiA.NovakA.C.de CarvalhoJ.C.2011Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewageApplied Energy88103291329410.1016/j.apenergy.2010.11.024Open DOISearch in Google Scholar

Tan, K.W.M. & Lee, Y.K. (2016). The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth. Biotechnology for Biofuels 9(1): 255. 10.1186/s13068-016-0671-2.TanK.W.M.LeeY.K.2016The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growthBiotechnology for Biofuels9125510.1186/s13068-016-0671-2512052527895709Open DOISearch in Google Scholar

Tasi, M.B., Pinto, L.F.R., Klein, B.C., Veljkovi, V.B. & Filho, R.M. (2016). Botryococcus braunii for biodiesel production. Renewable and Sustainable Energy Reviews 64: 260–270. 10.1016/j.rser.2016.06.009.TasiM.B.PintoL.F.R.KleinB.C.VeljkoviV.B.FilhoR.M.2016Botryococcus braunii for biodiesel productionRenewable and Sustainable Energy Reviews6426027010.1016/j.rser.2016.06.009Open DOISearch in Google Scholar

Tsarenko, P., Borysova, O. & Blume, Y. (2016). High biomass producers and promising candidates for biodiesel production from microalgae collection IBASU-A(Ukraine). Oceanol. Hydrobiol. St. 45(1): 79–85. 10.1515/ohs-2016-0008.TsarenkoP.BorysovaO.BlumeY.2016High biomass producers and promising candidates for biodiesel production from microalgae collection IBASU-A(Ukraine)Oceanol. Hydrobiol. St451798510.1515/ohs-2016-0008Open DOISearch in Google Scholar

Wood, M. A., Everroad, R. C., & Wingard, L. (2005). Measuring Growth Rates in Microalgal Cultures. In R.A. Andersen (Ed.), Algal Culturing Techniques (pp. 269–285). Burlington, USA. 10.1007/s13398-014-0173-7.2.WoodM. A.EverroadR. C.WingardL.2005Measuring Growth Rates in Microalgal CulturesAndersenR.A.Algal Culturing Techniques269285Burlington, USA10.1007/s13398-014-0173-7.2Open DOISearch in Google Scholar

Wuang, S.C., Luo, Y.D., Wang, S., Chua, P.Q.D., & Tee, P.S. (2016). Performance assessment of biofuel production in an algae-based remediation system. Journal of Biotechnology 221: 43–48. 10.1016/j.jbiotec.2016.01.024.WuangS.C.LuoY.D.WangS.ChuaP.Q.D.TeeP.S.2016Performance assessment of biofuel production in an algae-based remediation systemJournal of Biotechnology221434810.1016/j.jbiotec.2016.01.02426808868Open DOISearch in Google Scholar

Xu, Y. & Boeing, W.J. (2014). Modeling maximum lipid productivity of microalgae: Review and next step. Renewable and Sustainable Energy Reviews 32: 29–39. 10.1016/j.rser.2014.01.002.XuY.BoeingW.J.2014Modeling maximum lipid productivity of microalgae: Review and next stepRenewable and Sustainable Energy Reviews32293910.1016/j.rser.2014.01.002Open DOISearch in Google Scholar

Yoo, C., Jun, S.-Y., Lee, J.-Y., Ahn, C.-Y. & Oh, H.-M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 101(1): S71-S74 10.1016/j.biortech.2009.03.030.YooC.JunS.-Y.LeeJ.-Y.AhnC.-Y.OhH.-M.2010Selection of microalgae for lipid production under high levels carbon dioxideBioresource Technology1011S71S7410.1016/j.biortech.2009.03.03019362826Open DOISearch in Google Scholar

Yu, X., Zhao, P., He, C., Li, J., Tang, X. et al. (2012). Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Bioresource Technology 121: 256–262. 10.1016/j.biortech.2012.07.002.YuX.ZhaoP.HeC.LiJ.TangX.2012Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstockBioresource Technology12125626210.1016/j.biortech.2012.07.00222858494Open DOISearch in Google Scholar

eISSN:
1897-3191
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, other, Geosciences, Life Sciences