1. bookVolume 62 (2017): Issue 2 (June 2017)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Hyperfine interactions and some thermomagnetic properties of amorphous FeZr(Cr)NbBCu alloys

Published Online: 09 Jun 2017
Volume & Issue: Volume 62 (2017) - Issue 2 (June 2017)
Page range: 135 - 140
Received: 21 Jun 2016
Accepted: 29 Sep 2016
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

In this research, we studied the magnetic phase transition by Mössbauer spectroscopy and using vibrating sample magnetometer for amorphous Fe86-xZr7CrxNb2Cu1B4 (x = 0 or 6) alloys in the as-quenched state and after accumulative annealing in the temperature range 600-750 K. The Mössbauer investigations were carried out at room and nitrogen temperatures. The Mössbauer spectra of the investigated alloys at room temperature are characteristic of amorphous paramagnets and have a form of asymmetric doublets. However, at nitrogen temperature, the alloys behave like ferromagnetic amorphous materials. The two components are distinguished in the spectrum recorded at both room and nitrogen temperatures. The low field component in the distribution of hyperfine field induction shifts towards higher field with the annealing temperature. It is assumed that during annealing at higher temperature, due to diffusion processes, the grains of α-Fe are created in the area corresponding to this component. Both investigated alloys show the invar effect and the decrease of hyperfine field induction after annealing at 600 K for 10 min is observed. It is accompanied by the lowering of Curie temperature.

Keywords

1. Lorenz, R., & Hafner, J. (1995). Non-collinear magnetic structures in amorphous iron and iron-based alloys. J. Magn. Magn. Mater., 139, 209-227. DOI: 10.1016/0304-8853(95)90049-7.10.1016/0304-8853(95)90049-7Search in Google Scholar

2. Rzącki, J., Świerczek, J., Hasiak, M., Olszewski, J., Zbroszczyk, J., & Ciurzyńska, W. (2015). Hyperfine interaction and some thermomagnetic properties of amorphous and partially crystallized Fe70-xMxMo5Cr4Nb6B15 (M=Co or Ni, x=0 or 10). Nukleonika, 60(1), 121-126. DOI: 10.1515/nuka-2015-0025.10.1515/nuka-2015-0025Search in Google Scholar

3. Ren, H., & Ryan, D. H. (1995). Exchange frustration and transverse spin freezing in iron-rich metallic glasses. Phys. Rev. B, 51, 15885-15897.10.1103/PhysRevB.51.15885Search in Google Scholar

4. McHenry, M. E., Willard, M. A., & Laughlin, D. E. (1999). Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mat. Sci., 44, 291-433. DOI: 10.1016/S0079-6425(99)00002-X.10.1016/S0079-6425(99)00002-XSearch in Google Scholar

5. Herzer, G. (2013). Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater., 61, 718-734. DOI: 10.1016/j.actamat.2012.10.040.10.1016/j.actamat.2012.10.040Search in Google Scholar

6. Greneche, J. M. (1997). Nanocrystalline ironbased alloys investigated by Mössbauer spec- trometry. Hyperfi ne Interact., 110, 81-91. DOI: 10.1023/A:1012671315478.10.1023/A:1012671315478Search in Google Scholar

7. Miglierini, M., & Greneche, J. M. (1997). Mössbauer spectrometry of Fe(Cu)MB-type nanocrystalline alloys: I. The fi tting model for the Mössbauer spectra. J. Phys.-Condens. Matter, 9, 2303-2319. DOI: 10.1088/0953-8984/9/10/017.10.1088/0953-8984/9/10/017Search in Google Scholar

8. Hesse, J., & Rübartsch, A. (1974). Model independent evaluation of overlapped Mössbauer spectra. J. Phys. E.-Sci. Inst., 7, 526-532.10.1088/0022-3735/7/7/012Search in Google Scholar

9. Brand, R. A. (1987). Improving the validity of hyperfi ne fi eld distributions from magnetic alloys. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 28, 398-416.Search in Google Scholar

10. Kopcewicz, M., Grabias, A., Nowicki, P., & Williamson, D. L. (1996). Mössbauer and X-ray study of the structure and magnetic properties of amorphous and nanocrystalline Fe81Zr7B12 and Fe79Zr7B12Cu2 alloys. J. Appl. Phys., 79, 993-1003. DOI: 10.1063/1.360885.10.1063/1.360885Search in Google Scholar

11. Gondro, J., Świerczek, J., Rzącki, J., Ciurzyńska, W., Olszewski, J., Zbroszczyk, J., Błoch, K., Osyra, M., & Łukiewska, A. (2013) Invar behaviour of NANOPERM-type amorphous Fe-(Pt)-Zr-Nb-Cu-B alloys. J. Magn. Magn. Mater., 341, 100-107. DOI: 10.1016/j.jmmm.2013.04.009.10.1016/j.jmmm.2013.04.009Search in Google Scholar

12. Błachowski, A., & Wdowik, U. D. (2012). Transition metal impurity effect on charge and spin density in iron: Ab initio calculations and comparison with Mössbauer data. J. Phys. Chem. Solids, 73, 317-323. DOI: 10.1016/j.jpcs.2011.10.017.10.1016/j.jpcs.2011.10.017.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo