Open Access

Synthesis and characterization of iron oxide magnetic nanoparticles

, ,  and   
Jun 09, 2017

Cite
Download Cover

1. Xu, S., Habib, A. H., Pickel, A. D., & McHenry, M. E. (2015). Magnetic nanoparticle-based solder composites for electronic packaging applications. Prog. Mater. Sci., 67, 95-160. <http://dx.doi.org/10.1016/j.pmatsci.2014.08.001>. Search in Google Scholar

2. Zahn, M. (2001). Magnetic fluid and nanoparticle applications to nanotechnology. J. Nanopart. Res., 3, 73-78.10.1023/A:1011497813424Search in Google Scholar

3. Tartaj, P., Puerto Morales, M., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., & Serna, C. J. (2003). The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D-Appl. Phys., 36, R182-R197. stacks.iop.org/JPhysD/36/R182.10.1088/0022-3727/36/13/202Search in Google Scholar

4. Duguet, E., Vasseur, S., Mornet, S., & Devoisselle, J. M. (2006). Magnetic nanoparticles and their applications in medicine. Nanomedicine, 1, 157-168. DOI: 10.2217/17435889.1.2.157.10.2217/17435889.1.2.15717716105Search in Google Scholar

5. Ito, A., Shinkai, M., Honda, H., & Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng., 100, 1-11. DOI: 10.1263/jbb.100.1.10.1263/jbb.100.116233845Search in Google Scholar

6. Sun, C., Lee, J. S. H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 60, 1252-1265. DOI: 10.1016/j.addr.2008.03.018.10.1016/j.addr.2008.03.018270267018558452Search in Google Scholar

7. Veiseh, O., Gunn, J. W., & Zhang, M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev., 62, 284-304. DOI: 10.1016/j.addr.2009.11.002.10.1016/j.addr.2009.11.002282764519909778Search in Google Scholar

8. Lacroix, L. M., Bel Malaki, R., Carrey, J., Lachaize, S., Respaud, M., Goya, G. F., & Chaudret, B. (2009). Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behavior and large losses. J. Appl. Phys., 105, 023911. DOI: 10.1063/1.3068195.10.1063/1.3068195Search in Google Scholar

9. Subramanian, M., Miaskowski, A., Pearcec, G., & Dobsond, J. (2015). A coil system for realtime magnetic fluid hyperthermia microscopy studies. Int. J. Hyperther., 32, 112-120. DOI: 10.3109/02656736.2015.1104732.10.3109/02656736.2015.110473226670862Search in Google Scholar

10. Wu, W., He, Q., & Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett., 3, 397-415. DOI: 10.1007/s11671-008-9174-9.10.1007/s11671-008-9174-9324495421749733Search in Google Scholar

11. Bumb, A., Brechbiel, M. W., Choyke, P. L., Fugger, L., Eggeman, A., Prabhakaran, D., Hutchinson, J., & Dobson, P. J. (2008). Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica. Nanotechnology, 19, 335601. DOI: 10.1088/0957-4484/19/33/335601.10.1088/0957-4484/19/33/335601260079819701448Search in Google Scholar

12. Taupitz, M., Wagner, S., Schnorr, J., Kravec, I., Pilgrimm, H., Bergmann-Fritsch, H., & Hamm, B. (2004). Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest. Radiol., 39, 394-405.10.1097/01.rli.0000129472.45832.b0Search in Google Scholar

13. Zhang, M. Q., Zhang, Y., & Kohler, N. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23, 1553-1561. DOI: 10.1016/S0142-9612(01)00267-8.10.1016/S0142-9612(01)00267-8Search in Google Scholar

14. Wiogo, H. T. R., Lim, M., Bulmus, V., Yun, J., & Amal, R. (2011). Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS). Langmuir, 27, 843-850. DOI: 10.1021/La104278m.10.1021/la104278mSearch in Google Scholar

15. Williamson, G. K., & Hall, W. H. (1952). X-ray line broadening from filed aluminium and wolfram. Acta Metall., 1, 22-31. DOI: 10.1016/0001-6160(53)90006-6.10.1016/0001-6160(53)90006-6Search in Google Scholar

16. Jeong, J. R., Shin, S. C., Lee, S. J., & Kim, J. D. (2005). Magnetic properties of superparamagnetic γ-Fe2O3 nanoparticles prepared by coprecipitation technique. J. Magn. Magn. Mater., 286, 5-9. DOI: 10.1016/j.jmmm.200.09.129.Search in Google Scholar

17. Kalska-Szostko, B., Zubowska, M., & Satuła, D. (2006). Studies of the magnetite nanoparticles by means of Mössbauer spectroscopy. Acta Phys. Pol. A, 109, 365-369.10.12693/APhysPolA.109.365Search in Google Scholar

18. Marín, T., Montoya, P., Arnache, O., & Calderón, J. (2016). Infl uence of surface treatment on magnetic properties of Fe3O4 nanoparticles synthesized by electrochemical method. J. Phys. Chem. B, 120, 6634-6645. DOI: 10.1021/acs.jpcb.6b01796.10.1021/acs.jpcb.6b0179627267938Search in Google Scholar

19. Mørup, S., Hansen, M. F., & Frandsen, C. (2010). Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol., 1, 182-190. DOI: 10.3762/bjnano.1.22.10.3762/bjnano.1.22304591221977409Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, Physics, other