1. bookVolume 62 (2017): Issue 1 (March 2017)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Measurements of doses from photon beam irradiation and scattered neutrons in an anthropomorphic phantom model of prostate cancer: a comparison between 3DCRT, IMRT and tomotherapy

Published Online: 04 Mar 2017
Volume & Issue: Volume 62 (2017) - Issue 1 (March 2017)
Page range: 29 - 35
Received: 07 Jul 2015
Accepted: 19 Sep 2016
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Introduction. The rapid development of new radiotherapy technologies, such as intensity modulated radiotherapy (IMRT) or tomotherapy, has resulted in the capacity to deliver a more homogenous dose in the target. However, the higher doses associated with these techniques are a reason for concern because they may increase the dose outside the target. In the present study, we compared 3DCRT, IMRT and tomotherapy to assess the doses to organs at risk (OARs) resulting from photon beam irradiation and scattered neutrons.

Material and methods. The doses to OARs outside the target were measured in an anthropomorphic Alderson phantom using thermoluminescence detectors (TLD 100) 6Li (7.5%) and 7Li (92.5%). The neutron fluence rate [cm−2·s−1] at chosen points inside the phantom was measured with gold foils (0.5 cm diameter, mean surface density of 0.108 g/cm3).

Results. The doses [Gy] delivered to the OARs for 3DCRT, IMRT and tomotherapy respectively, were as follows: thyroid gland (0.62 ± 0.001 vs. 2.88 ± 0.004 vs. 0.58 ± 0.003); lung (0.99 ± 0.003 vs. 4.78 ± 0.006 vs. 0.67 ± 0.003); bladder (80.61 ± 0.054 vs. 53.75 ± 0.070 vs. 34.71 ± 0.059); and testes (4.38 ± 0.017 vs. 6.48 ± 0.013 vs. 4.39 ± 0.020). The neutron dose from 20 MV X-ray beam accounted for 0.5% of the therapeutic dose prescribed in the PTV. The further from the field edge the higher the contribution of this secondary radiation dose (from 8% to ~45%).

Conclusion. For tomotherapy, all OARs outside the therapeutic field are well-spared. In contrast, IMRT achieved better sparing than 3DCRT only in the bladder. The photoneutron dose from the use of high-energy X-ray beam constituted a notable portion (0.5%) of the therapeutic dose prescribed to the PTV.

Keywords

1. Francois, P., Beurtheret, C., & Dutreix, A. (1988). Calculation of the dose delivered to organs outside the radiation beams. Med. Phys., 15(6), 879–883.10.1118/1.596170Search in Google Scholar

2. Howell, R. M., Scarboro, S. B., Kry, S. F., & Yaldo, D. Z. (2010). Accuracy of out-of-field dose calculations by a commercial treatment planning system. Phys. Med. Biol., 55(23), 6999–7008.10.1088/0031-9155/55/23/S03Search in Google Scholar

3. Sheikh-Bagheri, D., & Rogers, D. W. O. (2002). Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code. Med. Phys., 29, 391–402.10.1118/1.1445413Search in Google Scholar

4. Schulte, R. W., Rittmann, K. L., Meinass, H. J., & Rennicke, P. (1996). Radiation dose in critical organs due to non-coplanar irradiation of the hypophysis. Strahlenther. Onkol., 172(9), 501–506.Search in Google Scholar

5. ICRP. (1991). 1990 Recommendations of the International Commission on Radiological Protection. Ann. ICRP, 21(1/3).Search in Google Scholar

6. Kaderka, R., Schardt, D., Durante, M., Berger, T., Ramm, U., Licher, J., & La Tessa, C. (2012). Out-of-field dose measurements in a water phantom using different radiotherapy modalities. Phys. Med. Biol., 57, 5059–5074.10.1088/0031-9155/57/16/5059Search in Google Scholar

7. Kase, K. R., Syensson, G. K., Wolbarst, A. B., & Marks, M. A. (1983). Measurements of dose from secondary radiation outside a treatment field. Int. J. Radiat. Oncol. Biol. Phys., 9(8), 1177–1183.10.1016/0360-3016(83)90177-3Search in Google Scholar

8. Kry, S. F., Salehpour, M., Followill, D. S., Stovall, M., Kuban, D. A., White, R. A., & Rosen, I. I. (2005). Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 62(4), 1204–1216.10.1016/j.ijrobp.2004.12.09115990026Search in Google Scholar

9. Peszynska-Piorun, M., Malicki, J., & Golusinski, W. (2012). Doses in organs at risk during head and neck radiotherapy using IMRT and 3D-CRT. Radiol. Oncol., 46(4), 328–336.10.2478/v10019-012-0050-y357289523412761Search in Google Scholar

10. Van den Heuvel, F., Defraene, G., Crijns, W., & Bogaerts, R. (2012). Out-of-field contributions for IMRT and volumetric modulated arc therapy measured using gafchromic films and compared to calculations using a superposition/convolution based treatment planning system. Radiother. Oncol., 105(1), 127–132.10.1016/j.radonc.2011.12.03022300610Search in Google Scholar

11. Skórska, M., & Piotrowski, T. (2013). Optimization of treatment planning parameters used in tomotherapy for prostate cancer patients. Phys. Med., 29(3), 273–285.10.1016/j.ejmp.2012.03.00722521735Search in Google Scholar

12. ICRU. (2010). Prescribing, recording, and reporting intensity-modulated photon-beam therapy (IMRT). Washington: International Commission on Radiation Units and Measurements. (ICRU Report 83).Search in Google Scholar

13. Mackie, T. R., Holmes, T., Swerdloff, S., Reckwerdt, P., Deasy, J. O., Paliwal, B., & Kinsella, T. (1993). Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med. Phys., 20, 1709–1719.10.1118/1.5969588309444Search in Google Scholar

14. Harris, C. K., Elson, H. R., Lamba, M. A., & Foster, A. E. (1997). Comparison of effectiveness of thermoluminescent crystals LiF: Mg, Ti, and LiF: Mg, Cu, P for clinical dosimetry. Med. Phys., 24(9), 1527–1529.10.1118/1.5980429304583Search in Google Scholar

15. Nath, R., Boyer, A. L., La Riviere, P., McCall, R., & Price, K. (1986). Neutron measurements around high energy X-ray radiotherapy machines. New York: American Association of Physists in Medicine. (AAPM Report No. 19).10.37206/18Search in Google Scholar

16. Facure, A., Falcão, R. C., Silva, A. X., Crispim, V. R., & Vitorelli, J. C. (2005). A study of neutron spectra from medical linear accelerators. Appl. Radiat. Isot., 62, 69–72.10.1016/j.apradiso.2004.05.07215498687Search in Google Scholar

17. Kralik, M., & Turek, K. (2004). Characterisation of neutron fields around high-energy X-ray radiotherapy machines. Radiat. Prot. Dosim., 110(1/4), 503–507.10.1093/rpd/nch27415353699Search in Google Scholar

18. Vega-Carrillo, H. R., Ortiz-Hernandez, A., Hernandez-Davila, V. M., Hernández-Almaraz, B., & Rivera Montalvo, T. (2010). H*(10) and neutron spectra around linacs. J. Radioanal. Nucl. Chem., 283, 537–540.10.1007/s10967-009-0363-5Search in Google Scholar

19. Harrison, R. M., Wilkinson, M., Shemilt, A., Rawlings, D. J., Moore, M., & Lecomber, A. R. (2005). Estimating second cancer risk following radiotherapy: organ doses from prostate radiotherapy and concomitant exposures. Biomed. Tech., 50(Suppl. 1, Pt 1), 768–769.Search in Google Scholar

20. Kry, S., Salehpour, M., Followill, D., Stovall, M., Kuban, D., White, R., & Rosen, I. I. (2005). The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int. J. Radiat. Oncol., 62(4), 1195–1203.10.1016/j.ijrobp.2005.03.05315990025Search in Google Scholar

21. Stovall, M., Smith, S. A., Langholz, B. M., Boice, J. D., Shore, R. E., Andersson, M., Buchholz, T. A., Capanu, M., Bernstein, L., Lynch, C. F., Malone, K. E., Anton-Culver, H., Haile, R. W., Rosenstein, B. S., Reiner, A. S., Thomas, D. C., Bernstein, J. L., & WECARE Study Collaborative Group. (2008). Dose to the contra-lateral breast from radiotherapy and risk of second primary breast cancer in the WECARE study. Int. J. Radiat. Oncol., Biol. Phys., 72(4), 1021–1030.10.1016/j.ijrobp.2008.02.040378285918556141Search in Google Scholar

22. Al-Ghamdi, H., Fazal-ur-Rehman, Al-Jarallah, M. I., & Maalej, N. (2008). Photoneutron intensity with field size around radiotherapy linear accelerator 18-MeV X-ray beam. Radiat. Meas., 43, S495–S499.10.1016/j.radmeas.2008.03.065Search in Google Scholar

23. Chibani, O., & Ma, Ch. -M. Ch. (2003). Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs. Med. Phys., 30(8), 1990–2000.10.1118/1.159043612945965Search in Google Scholar

24. D’Errico, F., Nath, R., Tana, L., Curzio, G., & Alberts, W. G. (1998). In-phantom dosimetry and spectrometry of photoneutrons from an 18 MV linear accelerator. Med. Phys., 25(9), 1717–1724.10.1118/1.5983529775378Search in Google Scholar

25. Hall, E. J., & Wuu, C. (2003). Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int. J. Radiat. Oncol. Biol. Phys., 56, 83–88.10.1016/S0360-3016(03)00073-7Search in Google Scholar

26. Hernández, T. G., González, A. V., Peidro, J. P., Ferrando, J. V. R., González, L. B., Cabañero, D. G., & Torrecill, J. L. (2013). Radiobiological comparison of two radiotherapy treatment techniques for high-risk prostate cancer. Rep. Pract. Oncol. Radiother., 18(5), 265–271.10.1016/j.rpor.2012.12.006386322224416563Search in Google Scholar

27. Howell, R., Hertel, N. E., Wang, Z., Hutchinson, J., & Fullerton, G. D. (2006). Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for 6 MV, 15 MV and 18 MV beam energies. Med. Phys., 33(2), 360–368.10.1118/1.214011916532941Search in Google Scholar

28. Kase, K. R., Mao, X. S., Nelson, W. R., Liu, J. C., Kleck, J. H., & Elsalim, M. (1998). Neutron fluence and energy spectra around the Varian Clinac 2100C/2300C medical accelerator. Health Phys., 74, 38–47.10.1097/00004032-199801000-000059415580Search in Google Scholar

29. Kourinou, K. M., Mazonakis, M., Lyraraki, E., Stratakis, J., & Damilakis, J. (2012). Scattered dose to radiosensitive organs and associated risk for cancer development from head and neck radiotherapy in pediatric patients. Phys. Medica, 29(6), 650–655.10.1016/j.ejmp.2012.08.00122921884Search in Google Scholar

30. Lambrecht, M., Nevens, D., & Nuyts, S. (2013). Intensity-modulated radiotherapy vs. parotid-sparing 3D conformal radiotherapy. Strahlenther. Onkol., 189(3), 223–229.Search in Google Scholar

31. Leszczyński, W., Ślosarek, K., & Szlag, M. (2012). Comparison of dose distribution in IMRT and Rapid Arc technique in prostate radiotherapy. Rep. Pract. Oncol. Radiother., 17(6), 347–351.10.1016/j.rpor.2012.05.002386325324377036Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo