1. bookVolume 61 (2016): Issue 4 (December 2016)
Journal Details
License
Format
Journal
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo

Modelling of the soft X-ray tungsten spectra expected to be registered by GEM detection system for WEST

Published Online: 26 Oct 2016
Page range: 433 - 436
Received: 25 Jul 2015
Accepted: 05 Feb 2016
Journal Details
License
Format
Journal
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo

In the future International Thermonuclear Experimental Reactor (ITER), the interaction between the plasma and the tungsten chosen as the plasma-facing wall material imposes that the hot central plasma loses energy by X-ray emission from tungsten ions. On the other hand, the registered X-ray spectra provide alternative diagnostics of the plasma itself. Highly ionized tungsten emits extremely complex X-ray spectra that can be understood only after exhaustive theoretical studies. The detailed analyses will be useful for proper interpretation of soft X-ray plasma radiation expected to be registered on ITER-like machines, that is, Tungsten (W) Environment in Steady-state Tokamak (WEST). The simulations of the soft X-ray spectra structures for tungsten ions have been performed using the flexible atomic code (FAC) package within the framework of collisional-radiative (CR) model approach for electron temperatures and densities relevant to WEST tokamak.

Keywords

1. Pütterich, T., Neu, R., Dux, R., Whiteford, A. D., O’Mullane, M. G., & ASDEX Upgrade Team. (2008). Modelling of measured tungsten spectra from ASDEX Upgrade and predictions for ITER. Plasma Phys. Control. Fusion, 50, 085016. DOI: 10.1088/0741-3335/50/8/085016.Search in Google Scholar

2. Neu, R., Fournier, K. B., Bolshukhin, D., & Dux, R. (2001). Spectral lines from highly charged tungsten ions in the soft-X-ray region for quantitative diagnostics of fusion plasmas. Phys. Scr., T92, 307. DOI: 10.1238/Physica.Topical.092a00307.Search in Google Scholar

3. O’Mullane, M. G., Summers, H. P., Whiteford, A. D., Meigs, A. G., Lawson, K. D., Zastrow, K. -D., Barnsley, R., Coffey, I. H., & JET-EFDA Contributors. (2006). Atomic modeling and instrumentation for measurement and analysis of emission in preparation for the ITER-like wall in JET. Rev. Sci. Instrum., 77, 10F520. http://dx.doi.org/10.1063/1.2236278.Search in Google Scholar

4. Ralchenko, Y., Tan, J. N., Gillaspy, J. D., & Pomeroy, J. M. (2006). Accurate modeling of benchmark x-ray spectra from highly charged ions of tungsten. Phys. Rev. A, 74, 042514. http://dx.doi.org/10.1103/Phys-RevA.74.042514.Search in Google Scholar

5. Clementson, J., Beiersdorfer, P., Brown, G. V., & Gu, M. F. (2010). Spectroscopy of M-shell x-ray transitions in Zn-like through Co-like W. Phys. Scr., 81, 015301. DOI: 10.1088/0031-8949/81/01/015301.Search in Google Scholar

6. Słabkowska, K., Polasik, M., Szymańska, E., Starosta, J., Syrocki, Ł., Rzadkiewicz, J., & Pereira, N. R. (2014). Modeling of the L and M x-ray line structures for tungsten in high-temperature tokamak plasmas. Phys. Scr., T161, 014015. DOI: 10.1088/0031-8949/2014/ T161/014015.Search in Google Scholar

7. Słabkowska, K., Polasik, M., Syrocki, Ł., Szymańska, E., Rzadkiewicz, J., & Pereira, N. R. (2015). Modeling of the M X-ray line structures for tungsten and L X-ray line structures for molybdenum. J. Phys.-Conf. Ser., 583, 012031. DOI: 10.1088/1742-6596/583/1/012036.Search in Google Scholar

8. Słabkowska, K., Rzadkiewicz, J., Syrocki, Ł., Szymańska, E., Shumack, A., Polasik, M., Pereira, N. R., & JET Contributors. (2015). On the interpretation of high-resolution x-ray spectra from JET with an ITER-like wall. J. Phys. B-At. Mol. Opt. Phys., 48, 144028. DOI: 10.1088/0953-4075/48/14/144028.Search in Google Scholar

9. Beiersdorfer, P., Clementson, J., Dunn, J., Gu, M. F., Morris, K., Podpaly, Y., Wang, E., Bitter, M., Feder, R., Hill, K. W., Johnson, D., & Barnsley, R. (2010). The ITER core imaging x-ray spectrometer. J. Phys. B-At. Mol. Opt. Phys., 43, 144008. DOI: 10.1088/0953-4075/43/14/144008.Search in Google Scholar

10. Gu, M. F. (2008). The fl exible atomic code. Can. J. Phys., 86(5), 675-689. DOI: 10.1139/p07-197.Search in Google Scholar

11. Kano, K., Suzuki, M., & Akatsuka, H. (2000). Spectroscopic measurement of electron temperature and density in argon plasmas based on collisional-radiative model. Plasma Sources Sci. Technol., 9, 314. DOI: 10.1088/0963-0252/9/3/309.Search in Google Scholar

12. Sauli, F. (1997). GEM: A new concept for electron amplifi cation in gas detectors. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 386, 531-534. DOI: 10.1016/S0168-9002(96)01172-2.Search in Google Scholar

13. Chernyshova, M., Czarski, T., Dominik, W., Jakubowska, K., Rzadkiewicz, J., Scholz, M., Pozniak, K., Kasprowicz, G., & Zabolotny, W. (2014). Development of GEM gas detectors for X-ray crystal spectrometry. JINST, 9, C03003. DOI: 10.1088/1748-0221/9/03/C03003.Search in Google Scholar

14. Rzadkiewicz, J., Dominik, W., Scholz, M., Chernyshova, M., Czarski, T., Czyrkowski, H., Dabrowski, R., Jakubowska, K., Karpinski, L., Kasprowicz, G., Kierzkowski, K., Pozniak, K., Salapa, Z., Zabolotny, W., Blanchard, P., Tyrrell, S., Zastrow, K. -D., & JET EFDA Contributors. (2013). Design of T-GEM detectors for X-ray diagnostics on JET. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 720, 36-38. DOI: 10.1016/j. nima.2012.12.041. Search in Google Scholar

Plan your remote conference with Sciendo