1. bookVolume 61 (2016): Issue 2 (June 2016)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Microwave plasma for hydrogen production from liquids

Published Online: 15 Jun 2016
Volume & Issue: Volume 61 (2016) - Issue 2 (June 2016)
Page range: 185 - 190
Received: 25 Sep 2015
Accepted: 20 Nov 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The hydrogen production by conversion of liquid compounds containing hydrogen was investigated experimentally. The waveguide-supplied metal cylinder-based microwave plasma source (MPS) operated at frequency of 915 MHz at atmospheric pressure was used. The decomposition of ethanol, isopropanol and kerosene was performed employing plasma dry reforming process. The liquid was introduced into the plasma in the form of vapour. The amount of vapour ranged from 0.4 to 2.4 kg/h. Carbon dioxide with the flow rate ranged from 1200 to 2700 NL/h was used as a working gas. The absorbed microwave power was up to 6 kW. The effect of absorbed microwave power, liquid composition, liquid flow rate and working gas fl ow rate was analysed. All these parameters have a clear influence on the hydrogen production efficiency, which was described with such parameters as the hydrogen production rate [NL(H2)/h] and the energy yield of hydrogen production [NL(H2)/kWh]. The best achieved experimental results showed that the hydrogen production rate was up to 1116 NL(H2)/h and the energy yield was 223 NL(H2) per kWh of absorbed microwave energy. The results were obtained in the case of isopropanol dry reforming. The presented catalyst-free microwave plasma method can be adapted for hydrogen production not only from ethanol, isopropanol and kerosene, but also from different other liquid compounds containing hydrogen, like gasoline, heavy oils and biofuels.

Keywords

1. Kabouzi, Y., Moisan, M., Rostaing, J. C., Trassy, C., Guerin, D., Kéroack, D., & Zakrzewski, Z. (2003). Abatement of perfluorinated compounds using microwave plasmas at atmospheric pressure. J. Appl. Phys., 93(12), 9483-9496. DOI: 10.1063/1.1574595.10.1063/1.1574595Search in Google Scholar

2. Moisan, M., & Pelletier, J. (1992). Microwave excited plasmas. Amsterdam, Holland: Elsevier.Search in Google Scholar

3. Mizeraczyk, J., Dors, M., Jasiński, M., Hrycak, B., & Czylkowski, D. (2013). Atmospheric pressure low-power microwave microplasma source for deactivation of microorganisms. Eur. Phys. J. Appl. Phys., 61, 24309. DOI: 10.1051/epjap/2012120405.10.1051/epjap/2012120405Search in Google Scholar

4. Czylkowski, D., Hrycak, B., Jasiński, M., Dors, M., & Mizeraczyk, J. (2013). Atmospheric pressure microwave microplasma microorganisms deactivation. Surf. Coat. Technol., 234, 114-119. DOI: 10.1016/j. surfcoat.2013.04.010.Search in Google Scholar

5. Chen, H. H., Weng, C. C., Liao, J. D., Chen, K. M., & Hsu, B. W. (2009). Photo-resist stripping process using atmospheric pressure microplasma system. J. Phys. D-Appl. Phys., 42(13), 1-8. DOI: 10.1088/0022-3727/42/13/135201.10.1088/0022-3727/42/13/135201Search in Google Scholar

6. Denes, F. S., & Manolache, S. (2004). Macromolecular plasma-chemistry: an emerging fi eld of polymer science. Prog. Polym. Sci., 29(8), 815-885. DOI: 10.1016/ j.progpolymsci.2004.05.001.10.1016/j.progpolymsci.2004.05.001Search in Google Scholar

7. Chu, P. K., Chen, J. Y., Wang, L. P., & Huang, N. (2002). Plasma-surface modifi cation of biomaterials. Mater. Sci. Eng. R, 36(5/6), 143-206. DOI: 10.1016/ S0927-796X(02)00004-9.10.1016/S0927-796X(02)00004-9Search in Google Scholar

8. Morent, R., de Geyter, N., Verschuren, J., de Clerck, K., Kiekens, P., & Leys, C. (2008). Non-thermal plasma treatment of textiles. Surf. Coat. Technol., 202(14), 3427-3449. DOI: 10.1016/j.surfcoat.2007.12.027.10.1016/j.surfcoat.2007.12.027Search in Google Scholar

9. Tendero, C., Tixier, C., Tristant, P., Desmaison, J., & Leprince, P. (2006). Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B, 61(1), 02-30. DOI: 10.1016/j.sab.2005.10.003.10.1016/j.sab.2005.10.003Search in Google Scholar

10. Jasiński, M., Mizeraczyk, J., Zakrzewski, Z., Ohkubo, T., & Chang, J. S. (2002). CFC-11 destruction by microwave plasma torch generated atmospheric-pressure nitrogen discharge. J. Phys. D-Appl. Phys., 35(18), 2274-2280. DOI: 10.1088/0022-3727/35/18/308.10.1088/0022-3727/35/18/308Search in Google Scholar

11. Baeva, M., Gier, H., Pott, A., Uhlenbusch, J., Hoschele, J., & Steinwandel, J. (2002). Pulsed microwave discharge at atmospheric pressure for NOx decomposition. Plasma Sources Sci. Technol., 11(1), 1-9. DOI: 10.1088/0963-0252/11/1/301.10.1088/0963-0252/11/1/301Search in Google Scholar

12. Jasiński, M., Dors, M., & Mizeraczyk, J. (2009). Destruction of freon HFC-134a using a nozzleless microwave plasma source. Plasma Chem. Plasma Process., 29(5), 363-372. DOI: 10.1007/s11090-009-9183-1.10.1007/s11090-009-9183-1Search in Google Scholar

13. Mizeraczyk, J., Jasiński, M., Nowakowska, H., & Dors, M. (2012) Studies of atmospheric-pressure microwave plasmas used for gas processing. Nukleonika, 57(2), 241-247Search in Google Scholar

14. Jasiński, M., Czylkowski, D., Hrycak, B., Dors, M., & Mizeraczyk, J. (2013). Atmospheric pressure microwave plasma source for hydrogen production. Int. J. Hydrog. Energy, 38(26), 11473-11483. DOI: 10.1016/j.ijhydene.2013.05.105.10.1016/j.ijhydene.2013.05.105Search in Google Scholar

15. Mizeraczyk, J., Urashima, K., Jasiński, M., & Dors, M. (2014). Hydrogen production from gaseous fuels by plasmas - A review. Int. J. Plasma Env. Sci. Technol., 8(2), 89-97.Search in Google Scholar

16. Hrycak, B., Czylkowski, D., Miotk, R., Dors, M., Jasiński, M., & Mizeraczyk, J. (2014). Application of atmospheric pressure microwave plasma source for hydrogen production from ethanol. Int. J. Hydrog. Energy, 39(26), 14184-14190. DOI: 10.1016/j. ijhydene.2014.02.160.Search in Google Scholar

17. Hrycak, B., Czylkowski, D., Miotk, R., Dors, M., Jasinski, M., & Mizeraczyk, J. (2015). Hydrogen production from ethanol in nitrogen microwave plasma at atmospheric pressure. Open Chem., 13(1), 317-324. DOI: 10.1515/chem-2015-0039.10.1515/chem-2015-0039Search in Google Scholar

18. Czylkowski, D., Hrycak, B., Miotk, R., Jasiński, M., Dors, M., & Mizeraczyk, J. (2015). Hydrogen production by conversion of ethanol using atmospheric pressure microwave plasmas. Int. J. Hydrog. Energy, 40(40), 14039-14044. DOI: 10.1016/j. ijhydene.2015.06.101.Search in Google Scholar

19. Randolph, K. (2013). Hydrogen production. In Hydrogen and Fuel Cells - Annual Merit Review and Peer Evaluation Meeting, May 13-17, 2013, Arlington, Virginia, USA. U.S. Department of Energy (DOE).Search in Google Scholar

20. Bromberg, L., Cohn, D. R., & Rabinovich, A. (1997). Plasma reformer-fuel cell system for decentralized power applications. Int. J. Hydrog. Energy, 22(1), 83-94. DOI: 10.1016/0360-3199(95)00121-2.10.1016/0360-3199(95)00121-2Search in Google Scholar

21. Bromberg, L., Cohn, D. R., Rabinovich, A., Alexeev, N., Samokhin, A., Ramprasad, R., & Tamhankar, S. (2000). System optimization and cost analysis of plasma catalytic reforming of natural gas. Int. J. Hydrog. Energy, 25(12), 1157-1161. DOI: 10.1016/ S0360-3199(00)00048-3.10.1016/S0360-3199(00)00048-3Search in Google Scholar

22. Sekiguchi, H., & Mori, Y. (2002). Steam plasma reforming using microwave discharge. Thin Solid Films, 435(1/2), 44-48. DOI: 10.1016/S0040-6090(03)00379-1.10.1016/S0040-6090(03)00379-1Search in Google Scholar

23. Liu, K., Song, Ch., & Subramani, V. (2010). Hydrogen and syngas production and purification technologies. Hoboken, New Jersey, USA: John Wiley & Sons, Inc.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo