1. bookVolume 61 (2016): Issue 2 (June 2016)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Ambient fields generated by a laser spark

Published Online: 15 Jun 2016
Volume & Issue: Volume 61 (2016) - Issue 2 (June 2016)
Page range: 119 - 124
Received: 25 Sep 2015
Accepted: 04 Dec 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The electric and magnetic fields surrounding a laser spark formed after an optical breakdown due to a focused nanosecond laser beam in a gaseous environment are examined in order to assess their possible influence on the processes going on in the gas medium, mainly chemical reactions triggered by the spark plasma radiation. The magnetic field is generated by the standard mechanism of crossed electron density and temperature gradients, the electric field is supposed to be produced by the plasma polarization due to its radial expansion across the self-generated magnetic field. A simple model of spark plasma formation near the tip of the focal cone is assumed, with a delayed breakdown, which allows the focused laser light to sweep the whole volume of the forming spark right down to the focal caustic and thus to form a centimeter long plasma cone. In this conical geometry, the value of plasma electric dipole moment is evaluated as a measurable quantity as well as approximate values of the electric and magnetic field near the focal caustic, where they both tend to grow in magnitude.

Keywords

1. Miller, S. L. (1953). A production of amino acids under possible primitive Earth conditions. Science, 117, 528-529. DOI: 10.1126/science.117.3046.528.10.1126/science.117.3046.52813056598Search in Google Scholar

2. Civiš, S., Babánková, D., Cihelka, J., Sazama, P., & Juha, L. (2008). Spectroscopic investigations of high-power laser-induced dielectric breakdown in gas mixtures containing carbon monoxide. J. Phys. Chem., 112, 7162-7169. DOI: 10.1021/jp712011t.10.1021/jp712011t18636696Search in Google Scholar

3. Juha, L., & Civiš, S. (2008). Laser-plasma chemistry. In M. Lackner (Ed.), Chemical reactions initiated by laser-produced plasmas, lasers in chemistry. (Vol. 2, (pp. 829-921). Weinheim: Wiley-VCH.Search in Google Scholar

4. Ferus, M., Nesvorný, D., Sponer, J., Kubelík, P., Michalčíková, R., Shestivska, V., Sponer, J. E., & Civiš, S. (2015). High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. U. S. A., 386, 657-662. DOI: 10.1073/ pnas.1412072111.10.1073/pnas.1412072111431186925489115Search in Google Scholar

5. Managadze, G. (2007). A new universal mechanism of organic compounds synthesis during prebiotic evolution. Planet Space Sci., 55, 134-140. DOI: 10.1016/ j.pss.2006.05.024.10.1016/j.pss.2006.05.024Search in Google Scholar

6. Zhivopistsev, E. S., Klimov, I. V., Markelov, E. Yu., Korobkin, V. V., & Motylev, S. L. (1992). Study of the electric field of a laser spark produced in a breakdown of the air. Bull. Russ. Acad. Sci. Phys., 56, 1335-1341.Search in Google Scholar

7. Raizer, Yu. P. (1974). Lazernaya iskra i rasprostranenie razriadov. Moskva: Izdatelstvo Nauka; see also Raizer, Yu. P. (1977). Laser-induced discharge phenomena. New York, London: Consultants Bureau.Search in Google Scholar

8. Bessarab, A. V., Dalgaleva, G. V., Zhidkov, N. V., Kainov, V. Yu., Kormer, S. B., Pavlov, D. V., Urlin, V. D., Funtikov, A. I., & Yakutov, B. P. (1992). O raspade vozdushnoy plazmy obrazovannoy lazerom. In G. A. Kirillov, M. V. Sinitsyn, & V. D. Urlin (Eds.), Veshchestvo v ekstremalnykh usloviyakh (Trudy uchenykh yadernykh tsentrov Rossii, pp. 156-162). Nizhny Novgorod: MAE RF, RFYaTs-VNIIEF.Search in Google Scholar

9. Civiš, S., Juha, L., Babánková, D., Cvačka, J., Frank, O., Jehlička, J., Králiková, B., Krása, J., Kubelík, P., Muck, A., Pfeifer, M., & Ullschmied, J. (2004). Amino acid formation induced by high-power laser in CO2/ CO-N2-H2O gas mixtures. Chem. Phys. Lett., 386, 169-173. DOI: 10.1016/j.cplett.2004.01.034.10.1016/j.cplett.2004.01.034Search in Google Scholar

10. Cintas, P., & Viedmon, C. (2012). The physical basis of asymmetry and homochirality. Chirality, 24, 894-908. DOI: 10.1002/chir.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo