1. bookVolume 61 (2016): Issue 2 (June 2016)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Self-similar solution of laser-produced plasma expansion into vacuum with kappa-distributed electrons

Published Online: 15 Jun 2016
Volume & Issue: Volume 61 (2016) - Issue 2 (June 2016)
Page range: 115 - 118
Received: 17 Sep 2015
Accepted: 09 Nov 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The expansion of semi-infinite laser produced plasma into vacuum is analyzed with a hydrodynamic model for cold ions assuming electrons modeled by a kappa-type distribution. Self-similar analytic expressions for the potential, velocity, and density of the plasma have been derived. It is shown that nonthermal energetic electrons have the role of accelerating the self-similar expansion.

Keywords

1. Hau, L. -N., & Fu, W. -Z. (2007). Mathematical and physical aspects of kappa velocity distribution. Phys. Plasmas, 14, 110702.10.1063/1.2779283Search in Google Scholar

2. Leubner, M. P. (2004). Fundamental issues on kappa- -distributions in space plasmas and interplanetary proton distributions. Phys. Plasmas, 11, 1308-1316.10.1063/1.1667501Search in Google Scholar

3. Huang, Y., Bi, Y., Duan, X., Lan, X., Wang, N., Tang, X., & He, Y. (2008). Energetic ion acceleration with a non-Maxwellian hot-electron tail. Appl. Phys. Lett., 92, 141504.10.1063/1.2908971Search in Google Scholar

4. Itina, T. E., Hermann, J., Delaporte, P., & Sentis, M. (2002). Laser-generated plasma plume expansion: Combined continuous-microscopic modeling. Phys. Rev. E, 66, 066406.10.1103/PhysRevE.66.06640612513411Search in Google Scholar

5. Bennaceur-Doumaz, D., & Djebli, M. (2010). Modeling of laser induced plasma expansion in the presence of non-Maxwellian electrons. Phys. Plasmas, 17, 074501.10.1063/1.3458671Search in Google Scholar

6. Wickens, L. M., & Allen, J. E. (1979). Free expansion of a plasma with two electron temperatures. J. Plasma Phys., 22, 167-185.10.1017/S002237780001000XSearch in Google Scholar

7. Schmalz, R. F. (1985). New selfsimilar solutions for the unsteady one dimensional expansion of a gas into a vacuum. Phys. Fluids, 28, 2923-2925.10.1063/1.865214Search in Google Scholar

8. Shokoohi, R., & Abbasi, H. (2009). Influence of electron velocity distribution on the plasma expansion features. J. Appl. Phys., 106, 033309.10.1063/1.3168437Search in Google Scholar

9. Liu, B., Zhang, H., Fu, L. B., Gu, Y. Q., Zhang, B. H., Liu, M. P., Xie, B. S., Liu, J., & He, X. T. (2010). Ion jet generation in the ultra-intense laser interactions with rear-side concave. Laser Part. Beams, 28, 351-359.10.1017/S0263034610000303Search in Google Scholar

10. Sagisaka, A., Nagatomo, H., Daido, H., Pirozhkov, A. S., Ogura, K., Orimo, S., Mori, M., Nishiuchi, M., Yogo, A., & Kado, M. (2009). Experimental and computational characterization of hydrodynamic expansion of a preformed plasma from thin-foil target for laser-driven proton acceleration. J. Plasma Phys., 75(5), 609-617.10.1017/S0022377809990043Search in Google Scholar

11. Flippo, K., Bartal, T., Beg, F., Chawla, S., Cobble, J., Gaillard, S., Hey, D., MacKinnon, A., MacPhee, A., Nilson, P., Offermann, D., Le Pape, S., & Schmitt, M. J. (2010). Omega EP, laser scalings and the 60 MeV barrier: First observations of ion acceleration performance in the 10 picosecond kilojoule short-pulse regime. J. Phys. Conf. Ser., 244, 022033.10.1088/1742-6596/244/2/022033Search in Google Scholar

12. Summers, D., & Thorne, R. M. (1991). The modified plasma dispersion function. Phys. Fluids B, 3, 1835-1847.10.1063/1.859653Search in Google Scholar

13. Sack, Ch., & Schamel, H. (1987). Plasma expansion into vacuum - a hydrodynamic approach. Phys. Rep., 156, 311-395.10.1016/0370-1573(87)90039-1Search in Google Scholar

14. Zel’dovich, Ya. B., & Raizer, Yu. P. (1966). Physics of shock waves and high-temperature phenomena. New York: Academic Press.Search in Google Scholar

15. Yu, M. Y., & Luo, H. (1995). Adiabatic self-similar expansion of dust grains in a plasma. Phys. Plasmas, 2, 591-593.10.1063/1.871410Search in Google Scholar

16. Cheng, J., Perrie, W., Wub, B., Tao, S., Edwardson, S. P., Dearden, G., & Watkins, K. G. (2009). Ablation mechanism study on metallic materials with a 10 ps laser under high fluence. Appl. Surf. Sci., 255, 8171-8175.10.1016/j.apsusc.2009.05.036Search in Google Scholar

17. Ivlev, A. V., & Fortov, V. E. (1999). One-dimensional plasma expansion into a vacuum in the field of an electromagnetic wave. Phys. Plasmas, 6, 1508-1514.10.1063/1.873403Search in Google Scholar

18. Bara, D., Djebli, M., & Bennaceur-Doumaz, D. (2014). Combined effects of electronic trapping and non-thermal electrons on the expansion of laser produced plasma into vacuum. Laser Part. Beams, 32, 391-398.10.1017/S0263034614000263Search in Google Scholar

19. Zouganelis, I., Maksimovic, M., Vernet, N. M., Lamy, H., & Issautier, K. (2004). A transonic collisionless model of the solar wind. J. Astrophys., 606, 542-554.10.1086/382866Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo