1. bookVolume 60 (2015): Issue 4 (December 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Comparison of the free volume sizes and shapes determined from crystallographic and PALS data

Published Online: 01 Dec 2015
Volume & Issue: Volume 60 (2015) - Issue 4 (December 2015)
Page range: 771 - 775
Received: 09 Jul 2015
Accepted: 28 Aug 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Two different classes of molecular crystals were investigated. The first group was benzenediols, which are characterized by the same chemical composition but a different organization of their crystallographic structures; all of the compounds from this group have only one kind of free volumes. The second class was represented by olanzapine, which has more complex chemical composition and two kinds of free volumes in the structure. The o-Ps lifetime values determined from positron annihilation lifetime spectroscopy (PALS) measurements agree quite well with those calculated for sizes found from crystallographic data for benzenediols (agreement within 10% of the lifetime values). For olanzapine, a good agreement is observed in the case of cuboidal free volumes, while for the other kind of void, the agreement is less satisfactory. Positronium diffusion coefficient determined from o-Ps redistribution in olanzapine agrees with these found for polymers.

Keywords

1. Tao, S. J. (1972). Positronium annihilation in molecular substances. J. Chem. Phys., 56, 5499–5510. DOI: 10.1063/1.1677067.10.1063/1.1677067Search in Google Scholar

2. Eldrup, M., Lightbody, D., & Sherwood, J. N. (1981). The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys., 63, 51–58. DOI: 10.1016/0301-0104(81)80307-2.10.1016/0301-0104(81)80307-2Search in Google Scholar

3. Jasińska, B., Kozioł, A. E., & Goworek, T. (1996). Ortho-positronium lifetimes in nonspherical voids. J. Radioanal. Nucl. Chem., 210(2), 617–623. DOI: 10.1007/BF02056403.10.1007/BF02056403Search in Google Scholar

4. Jasińska, B., Kozioł, A. E., & Goworek, T. (1999). Void shapes and o-Ps lifetime in molecular crystals. Acta Phys. Pol. A, 95, 557–561.10.12693/APhysPolA.95.557Search in Google Scholar

5. Goworek, T., Ciesielski, K., Jasińska, B., & Wawryszczuk, J. (1997). Positronium in large voids. Silicagel. Chem. Phys. Lett., 272, 91–95. DOI: 10.1016/S0009-2614(97)00504-6.10.1016/S0009-2614(97)00504-6Search in Google Scholar

6. Ciesielski, K., Dawidowicz, A., Goworek, T., Jasińska, B., & Wawryszczuk, J. (1998). Positronium lifetimes in porous Vycor glass. Chem. Phys. Lett., 289(1/2), 41–45. DOI: 10.1016/S0009-2614(98)00416-3.10.1016/S0009-2614(98)00416-3Search in Google Scholar

7. Kobayashi, Y., Zheng, W., Meyer, E. F., McGervey, J. D., Jamieson, A. M., & Simha, R. (1989). Free volume and physical aging of poly(vinyl acetate) studied by positron annihilation. Macromolecules, 22(5), 2302–2306. DOI: 10.1021/ma00195a052.10.1021/ma00195a052Search in Google Scholar

8. Dlubek, G., Pionteck, J., Sniegocka, M., Hassan, E. M., & Krause-Rehberg, R. (2007). Temperature and pressure dependence of the free volume in the perfluorinated polymer glass CYTOP: A positron lifetime and pressure-volume-temperature study. J. Polym. Sci. Pt. B-Pol. Phys., 45(18), 2519–2534. DOI: 10.1002/polb.21248.10.1002/polb.21248Search in Google Scholar

9. Brandt, W., & Paulin, R. (1968). Positronium diffusion in solids. Phys. Rev. Lett., 21, 193–195. DOI: 10.1103/PhysRevLett.21.193.10.1103/PhysRevLett.21.193Search in Google Scholar

10. Venkateswaran, K., Cheng, K. L., & Jean, Y. C. (1984). Application of positron annihilation to study the surface properties of porous resins. J. Phys. Chem., 88, 2465–2469. DOI: 10.1021/j150656a010.10.1021/j150656a010Search in Google Scholar

11. Tydda, M., Jasińska, B., Kozioł, A. E., & Wawrzycka-Gorczyca, I. (2013). Modification of the crystallographic structure of olanzapine during solvation by PALS and X-ray diffraction methods. Mater. Sci. Forum, 733, 92–95.10.4028/www.scientific.net/MSF.733.92Search in Google Scholar

12. Kansy, J. (1996). Microcomputer program for analysis of positron lifetime spectra. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 374, 235–244. DOI: 10.1016/0168-9002(96)00075-7.10.1016/0168-9002(96)00075-7Search in Google Scholar

13. Shukla, A., Peter, M., & Hoffmann, L. (1993). Analysis of positron lifetime spectra using quantified maximum entropy and a general linear filter. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Dect. Assoc. Equip., 335, 310–317. DOI: 10.1016/0168-9002(93)90286-Q.10.1016/0168-9002(93)90286-QSearch in Google Scholar

14. Jasińska, B., & Dawidowicz, A. L. (2003). Pore size determination in Vycor glass. Radiat. Phys. Chem., 68, 531–534. DOI: 10.1016/S0969-806X(03)00224-X.10.1016/S0969-806X(03)00224-XSearch in Google Scholar

15. Gidley, D. W., Frieze, W. E., Dull, T. L., Yee, A. F., Ryan, E. T., & Ho, H. M. (1999). Positronium annihilation in mesoporous thin films. Phys. Rev. B, 60(8), 5157–5160. DOI: 10.1103/PhysRevB.60.R5157.10.1103/PhysRevB.60.R5157Search in Google Scholar

16. Dlubek, G., Eichler, S., Hubner, Ch., & Nagel, Ch. (1999). Does the MELT program accurately reveal the lifetime distribution in polymers? Phys. Status Solidi A, 174, 313–325. DOI: 10.1002/(SICI)1521-396X(199908)174:2<313::AIDPSSA313>3.3.CO;2-U.Search in Google Scholar

17. Dlubek, G., Hubner, Ch., & Eichler, S. (1998). Do the CONTIN or the MELT programs accurately reveal the o-Ps lifetime distribution in polymers? Analysis of experimental lifetime spectra of amorphous polymers. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 142, 191–202. DOI: 10.1016/S0168-583X(98)00265-1.10.1016/S0168-583X(98)00265-1Search in Google Scholar

18. Zgardzinska, B. (2015). The size of smallest subnanometric voids estimated by positron annihilation method. Correction to the Tao-Eldrup model. Chem. Phys. Lett., 62, 20–22. DOI: 10.1016/j.cplett.2015.01.021.10.1016/j.cplett.2015.01.021Search in Google Scholar

19. Stepanov, S., & Byakov, V. (2003). Physical and radiation chemistry of positron and positronium. In Y. C. Jean, P. Mellon, & D. M. Schradder (Eds.), Principles and applications of positron and positronium chemistry (pp. 117–148). Singapore: World Scientific. DOI: 10.1142/9789812775610_0005.10.1142/9789812775610_0005Search in Google Scholar

20. Hirata, K., Kobayashi, Y., & Ujihira, Y. (1996). Diffusion coefficients of positronium in amorphous polymers. J. Chem. Soc., Faraday Trans., 92, 985–988.10.1039/ft9969200985Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo