1. bookVolume 60 (2015): Issue 4 (December 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

The effect of SO3-Ph-BTBP on stainless steel corrosion in nitric acid

Published Online: 30 Dec 2015
Volume & Issue: Volume 60 (2015) - Issue 4 (December 2015)
Page range: 865 - 869
Received: 19 Jun 2015
Accepted: 21 Aug 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

SO3-Ph-BTBP is a hydrophilic tetra-N-dentate ligand proposed for An(III)/Ln(III) separation by solvent extraction, and a candidate for use in future advanced reprocessing schemes such as GANEX and SANEX. We present the first study of the effect of SO3-Ph-BTBP on the corrosion behavior of stainless steels. Specifically, studies have been performed using steels and conditions equivalent to those found in relevant nuclear reprocessing flow sheets. SO3-Ph-BTBP has been shown to have little effect on either steel passivation or reductive dissolution. However, if driven cathodically into a region of hydrogen evolution at the electrode surface or conversely anodically into a region of transpassive dissolution, observed currents are reduced in the presence of SO3-Ph-BTBP, suggesting corrosion inhibition of the steel potentially through weak absorption of a SO3-Ph-BTBP layer at the metal-solution interface. The lack of any observed corrosion acceleration via complexation of Fe3+ is surprising and has been suggested to be due to the slow extraction kinetics of SO3-Ph-BTBP as a result of a requirement for a trans- to cis-conformational change before binding.

Keywords

1. Bell, K., Carpentier, C., Carrott, M. J., Geist, A., Gregson, C., Hères, X., Magnusson, D., Malmbeck, R., McLachlan, F., Modolo, G., Mullich, U., Sypula, M., Taylor, R. J., & Wilden, A. (2012). Progress towards the development of a new GANEX process. Procedia Chem., 7, 392-397.10.1016/j.proche.2012.10.061Search in Google Scholar

2. Carrott, M. J., Bell, K., Brown, J., Geist, A., Gregson, C., Hères, X., Maher, C., Malmbeck, R., Mason, C., Modolo, G., Mullich, U., Sarsfield, M., Wilden, A., & Taylor, R. J. (2014). Development of a new fl owsheet for co-separating the transuranic actinides: The “EURO-GANEX” process. Solvent Extr. Ion Exch., 32(5), 447-467.10.1080/07366299.2014.896580Search in Google Scholar

3. McKibben, J. M. (1984). Chemistry of the PUREX process. Radiochim. Acta, 36, 3-15.10.1524/ract.1984.36.12.3Search in Google Scholar

4. Tkac, P., Precek, M., & Paulenova, A. (2009). Redox reactions of Pu(IV) and Pu(III) in the presence of acetohydroxamic acid in HNO3 solutions. Inorg. Chem., 48, 11935-11944.10.1021/ic901081jSearch in Google Scholar

5. Taylor, R. J., May, I., Wallwork, A. L., Denniss, I. S., Hill, N. J., Galkin, B. Ya., Zilberman, B. Y., & Fedorov, Yu. S. (1998). The applications of formo- and aceto-hydroxamic acids in nuclear fuel reprocessing. J. Alloys Compd., 271/273, 534-537.10.1016/S0925-8388(98)00146-7Search in Google Scholar

6. Carrott, M. J., Fox, O. D., Le Gurun, G., Jones, C. J., Mason, C., Taylor, R. J., Andrieux, F. P. L., & Boxall, C. (2008). Oxidation-reduction reactions of simple hydroxamic acids and plutonium(IV) ions in nitric acid. Radiochim. Acta, 96, 333-343.10.1524/ract.2008.1502Search in Google Scholar

7. Bathke, C. G., Ebbinghaus, B. B., Collins, B. A., Sleaford, B. W., Hase, K. R., Robel, M., Wallace, R. K., Bradley, K. S., Ireland, J. R., Jarvinen, G. D., Johnson, M. W., Prichard, A. W., & Smith, B. W. (2012). The attractiveness of materials in advanced nuclear fuel cycles for various proliferation and theft scenarios. Nucl. Technol., 179(1), 5-30.10.13182/NT10-203Search in Google Scholar

8. Panak, P. J., & Geist, A. (2013). Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev., 113, 1199-1236.10.1021/cr300339923360356Search in Google Scholar

9. Benay, G., Schurhammer, R., & Wipff, G. (2011). Basicity, complexation ability and interfacial behavior of BTBPs: a simulation study. Phys. Chem. Chem. Phys., 13, 2922-2934.10.1039/C0CP01975E21161114Search in Google Scholar

10. Geist, A., Mullich, U., Modolo, G., & Wilden, A. (2012). Selective aqueous complexation of actinides with hydrophilic BTP and BTBP: Towards improved i-SANEX processes. In 11th Information Exchange Meeting Actinide and Fission Product Partitioning and Transmutation (pp. 1-9). Organisation for Fig. 4. Cis- and trans-conformations of SO3-Ph-BTBP. Economic Co-operation and Development - Nuclear Energy Agency: San Francisco, USA.Search in Google Scholar

11. Lewis, F. W., Harwood, L. M., Hudson, M. J., Drew, M. G. B., Wilden, A., Sypula, M., Modolo, G., Vu, T., Simonin, J., Vidick, G., Bouslimani, N., & Desreux, J. F. (2012). From BTBPs to BTPhens: The effect of ligand pre-organisation on the extraction properties of quadridentate bis-triazine ligands. Procedia Chem., 7, 231-238.10.1016/j.proche.2012.10.038Search in Google Scholar

12. Lewis, F. W., Harwood, L. M., Hudson, M. J., Drew, M. G. B., Hubscher-Bruder, V., Videva, V., Arnaud- -Neu, F., Stamberg, K., & Vyas, S. (2013). BTBPs versus BTPhens: Some reasons for their differences in properties concerning the partitioning of minor actinides and the advantages of BTPhens. Inorg.Chem., 52, 4993-5005.10.1021/ic302684223614770Search in Google Scholar

13. Geist, A., Mullich, U., Magnusson, D., Kaden, P., Modolo, G., Wilden, A., & Zevaco, T. (2012). Actinide(III)/lanthanide(III) separation via selective aqueous complexation of actinides(III) using a hydrophilic 2,6-bis(1,2,4-triazin-3-Yl)-pyridine in nitric acid. Solvent Extr. Ion Exch., 30, 433-444.10.1080/07366299.2012.671111Search in Google Scholar

14. Andrieux, F. P. L., Boxall, C., & Taylor, R. J. (2008). The hydrolysis of hydroxamic acid complexants in the presence of non-oxidising metal ions 2: Neptunium (IV) ions. J. Solution Chem., 37, 215-232.10.1007/s10953-007-9225-3Search in Google Scholar

15. Trumm, S., Lieser, G., Foreman, M. R. S. J., Panak, P. J., Geist, A., & Fanghanel, T. (2010). A TRLFS study on the complexation of Cm(III) and Eu(III) with 4-t-butyl-6,6ʹ-bis-(5,6-diethyl-1,2,4-triazin-3-yl)-2,2ʹ-bipyridine in a water/2-propanol mixture. Dalton Trans., 39, 923-929.10.1039/B919247F20066237Search in Google Scholar

16. Traister, G. L., & Schilt, A. A. (1976). Water-soluble sulfonated chromogenic reagents of the ferroin type and determination of iron and copper in water, blood serum, and beer with the tetraammonium salt of 2,4-bis(5,6-diphenyl-1,2,4-triazin-3-yl)pyridinetetrasulfonic acid. Anal. Chem., 48, 1216-1220.10.1021/ac50002a0391275276Search in Google Scholar

17. Padhy, N., Paul, R., Mudali, U. K., & Raj, B. (2011). Morphological and compositional analysis of passive film on austenitic stainless steel in nitric acid medium. Appl. Surf. Sci., 257, 5088-5097.10.1016/j.apsusc.2011.01.026Search in Google Scholar

18. Fauvet, P., Balbaud, F., Robin, R., Tran, Q. T., Mugnier, A., & Espinoux, D. (2008). Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants. J. Nucl. Mater., 375, 52-64.10.1016/j.jnucmat.2007.10.017Search in Google Scholar

19. Sicsic, D., Balbaud-Celerier, F., & Tribollet, B. (2014). Mechanism of nitric acid reduction and kinetic modelling. Eur. J. Inorg. Chem., 2014(36), 6174-6184.10.1002/ejic.201402708Search in Google Scholar

20. Abd El-Maksoud, S. A., & Fouda, A. S. (2005). Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium. Mater. Chem. Phys., 93, 84-90.10.1016/j.matchemphys.2005.02.020Search in Google Scholar

21. Ergun, U., Yuzer, D., & Emregul, K. C. (2008). The inhibitory effect of bis-2,6-(3,5-dimethylpyrazolyl) pyridine on the corrosion behaviour of mild steel in HCl solution. Mater. Chem. Phys., 109, 492-499.10.1016/j.matchemphys.2007.12.023Search in Google Scholar

22. Tebbji, K., Oudda, H., Hammouti, B., Benkaddour, M., El Kodadi, M., & Ramdani, A. (2005). Inhibition effect of two organic compounds pyridine-pyrazole type in acidic corrosion of steel. Colloids Surf. A, 259, 143-149.10.1016/j.colsurfa.2005.02.030Search in Google Scholar

23. Kosari, A., Moayed, M. H., Davoodi, A., Parvizi, R., Momeni, M., Eshghi, H., & Moradi, H. (2014). Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow. Corros. Sci., 78, 138-15010.1016/j.corsci.2013.09.009Search in Google Scholar

24. Hayward, T. M., Svishchev, I. M., & Makhija, R. C. (2003). Stainless steel flow reactor for supercritical water oxidation: corrosion tests. J. Supercrit. Fluids, 27(3), 275-281.10.1016/S0896-8446(02)00264-4Search in Google Scholar

25. Caire, J. P., Laurent, F., Cullie, S., Dalard, F., Fulconis, J. M., & Delagrange, H. (2003). AISI 304 L stainless steel decontamination by a corrosion process using cerium IV regenerated by ozone - Part I: Study of the accelerated corrosion process. J. Appl. Electrochem., 33, 703-708.10.1023/A:1025051306270Search in Google Scholar

26. Armijo, J. S. (1968). Intergranular corrosion of nonsensitized austenitic stainless steels. Corrosion, 24, 24-30.10.5006/0010-9312-24.1.24Search in Google Scholar

27. Byrne, J. P., Kitchen, J. A., & Gunnlaugsson, T. (2014). The BTP [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry. Chem. Soc. Rev., 43, 5302-5325. 10.1039/C4CS00120FSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo