1. bookVolume 60 (2015): Issue 3 (September 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Application of the new Monte Carlo code AlfaMC to the calibration of alpha-particle sources

Published Online: 25 Sep 2015
Volume & Issue: Volume 60 (2015) - Issue 3 (September 2015)
Page range: 651 - 655
Received: 24 Sep 2014
Accepted: 20 May 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Measurements of α-particle sources require corrections to the counting rate due to scattering and self-absorption in the source and the backing material. In this study, we describe a simple procedure to estimate these corrections using the new Monte Carlo code AlfaMC to consider the effects of scattering and self-absorption conjointly, and so to determine the activity of α emitters. The procedure proposed was applied to 235UO2 sources deposited on highly polished platinum backings. In general, the dependence of the efficiency with source thickness was in good agreement with a simple model considering a linear and a hyperbolic behavior for thin and thick sources, respectively, although significant deviations from this model were found for very thin sources. For these very thin sources, the Monte Carlo simulation revealed to be as a required method in the primary calibration of α-particle sources. The efficiency results obtained by simulation with AlfaMC were in agreement with available efficiency data.

Keywords

1. Crawford, J. A. (1949). Theoretical calculations concerning backscattering of alpha particles. In The transuranium elements (Part II, pp. 1307-1326). New York: McGraw-Hill.Search in Google Scholar

2. Lucas, L. L., & Hutchinson, J. M. R. (1976). Study of the scattering correction for thick uranium-oxide and other α-particle sources - I: Theoretical. Appl. Radiat. Isot., 27, 35-42.10.1016/0020-708X(76)90166-6Search in Google Scholar

3. Rossi, B. B., & Staub, H. H. (1949). Ionization chambers and counters. Experimental techniques. New York: McGraw-Hill.Search in Google Scholar

4. Semkow, T. M., Jeter, H. W., Parsa, B., Parekh, P. P., Haines, D. K., & Bari, A. (2005). Modeling of alpha mass-effi ciency curve. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 538, 790-800.10.1016/j.nima.2004.08.107Search in Google Scholar

5. White, P. H. (1970). Alpha and fission counting of thin foils of fissile material. Nucl. Instrum. Methods, 79, 1-12.10.1016/0029-554X(70)90002-9Search in Google Scholar

6. Williams, E. J. (1940). Multiple scattering of fast electrons and alpha particles, and “curvature” of cloud tracks due to scattering. Phys. Rev., 58, 292-306.10.1103/PhysRev.58.292Search in Google Scholar

7. Ballaux, C. (1985). Note on the scattering corrections in 2 πα counting. Appl. Radiat. Isot., 36, 822-824.10.1016/0020-708X(85)90035-3Search in Google Scholar

8. Deruytter, A. J. (1962). Evaluation of the absolute activity of alpha emitters and of the number of nuclei in thin alpha active layers. Nucl. Instrum. Methods, 15, 164-170.10.1016/0029-554X(62)90066-6Search in Google Scholar

9. Hutchinson, J. M. R., Lucas, L. L., & Mullen, P. A. (1976). Study of the scattering correction for thick uranium-oxide and other α-particle sources - II: Experimental. Appl. Radiat. Isot., 27, 43-45.10.1016/0020-708X(76)90167-8Search in Google Scholar

10. Walker, D. H. (1965). An experimental study of the backscattering of 5.3-MeV alpha particles from platinum and monel metal. Appl. Radiat. Isot., 16, 183-189.10.1016/0020-708X(65)90117-1Search in Google Scholar

11. Fernández Timón, A., Jurado Vargas, M., & Ziegler, J. F. (2014). Application of alpha particle transport to the modelization of effi ciency curves in proportional counters. J. Radioanal. Nucl. Chem., 302, 297-302.10.1007/s10967-014-3205-zSearch in Google Scholar

12. Ferrero, J., Roldán, C., Aceña, M., & García-Toraño, E. (1990). Backscattering and self-absorption corrections in the measurement of alpha-emitters in 2 π geometry. Nucl. Instrum. Methods Phys. Res. Sect. AAccel. Spectrom. Dect. Assoc. Equip., 286, 384-387.10.1016/0168-9002(90)90883-8Search in Google Scholar

13. Jurado Vargas, M., & Fernández Timón, A. (2004). Scattering and self-absorption corrections in the measurement of α-particle emitters in 2 π geometry. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 217, 564-571.Search in Google Scholar

14. Jurado Vargas, M., & Fernández Timón, A. (2005). Dependence of self-absorption on thickness for thin and thick alpha-particle sources of UO2. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 548, 432-438.10.1016/j.nima.2005.04.056Search in Google Scholar

15. Ziegler, J. F., Biersack, J. P., & Littmark, U. (1985). The stopping and range of ions in solids. New York: Pergamon Press.Search in Google Scholar

16. Peralta, L., & Louro, A. (2014). AlfaMC: A fast alpha particles transport Monte Carlo code. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 737, 163-169.10.1016/j.nima.2013.11.026Search in Google Scholar

17. Berger, M. J., Coursey, J. S., Zucker, M. A., & Chang, J. (2011). Stopping-power and range tables for helium ions. Retrieved April 24, 2014, from http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html. Search in Google Scholar

18. Vavilov, P. V. (1957). Ionization losses of high-energy heavy particles. Sov. Phys. JETP, 5, 749-751.Search in Google Scholar

19. Laboratoire National Henri Becquerel. (2008). Atomic & Nuclear Data. Retrieved April 24, 2014, from http://www.nucleide.org/NucData.htm. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo