1. bookVolume 60 (2015): Issue 3 (September 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

The influence of ionizing radiation on the properties of starch-PVA films

Published Online: 25 Sep 2015
Volume & Issue: Volume 60 (2015) - Issue 3 (September 2015)
Page range: 669 - 677
Received: 13 Nov 2014
Accepted: 20 May 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The cornstarch: poly(vinyl alcohol) (PVA) films characterized by the alternating ratio of starch:PVA (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100) and containing 30% of glycerol were prepared by solution casting. The films were irradiated with an absorbed dose of 25 kGy with gamma rays in a vacuum and with fast electrons in the air. The films characterized by a high content of starch appeared stiff, while the films characterized by a high content of PVA were highly flexible. The tensile strength and flexibility, as well as swelling and hydrophilicity, increased with the increase in the PVA content in the films. However, the tensile strength and wetting angle values achieved a minimum at an intermediate composition. It was found that irradiation enables to reduce hydrophilicity of the films accompanied by a decrease in their flexibility. No general conclusion concerning the effect of irradiation on tensile strength and swelling behavior can be derived. An increase in the homogeneity of the films and an increase in the compatibility of their components was found by scanning electron microscopy (SEM). Strong interactions of the starch and the PVA components were discovered by diffuse reflectance spectroscopy. Degradation was found to be the prevailing process occurring in the films under the influence of irradiation. The possible accompanying crosslinking is discussed in terms of the gel content in the samples. Creation of various oxidation products in the films characterized by the modified composition was observed under the influence of irradiation carried out in the air. Basing on the obtained results it can be supposed that the selected starch-PVA compositions might appear useful as packagings of the products predicted for radiation decontamination.

Keywords

1. Kester, J. J., & Fennema, O. R. (1986). Edible films and coatings: a review. Food Technol., 40, 47-59.Search in Google Scholar

2. Campos, A., Gershenson, L. N., & Flores, S. K. (2011). Development of edible fi lms and coatings with antimicrobial activity. Review paper. Food Bioprocess Technol., 4, 849-875.10.1007/s11947-010-0434-1Search in Google Scholar

3. Jimenez, A., Fabra, M. J., Talens, P., & Chiralt, A., (2012). Edible and biodegradable starch films: A review. Food Bioprocess Technol., 5, 2058-2076.10.1007/s11947-012-0835-4Search in Google Scholar

4. Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2006). Effect of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. J. Food Eng., 75, 453-460.10.1016/j.jfoodeng.2005.04.031Search in Google Scholar

5. Cieśla, K. A., Nowicki, A., & Buczkowski, M. J. (2010). Radiation modification of the functional properties of the edible fi lms prepared using starch and starch-lipid system. Nukleonika, 55(2), 233-242.Search in Google Scholar

6. Cieśla, K., Watzeels, N., & Rahier, H. (2014). Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films. Radiat. Phys. Chem., 99, 18-22.10.1016/j.radphyschem.2014.02.006Search in Google Scholar

7. Leszczyński, W. (1998). Starch application in biodegradable packaging plastics. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu, Technologia Żywności, 12(328), 105-115.Search in Google Scholar

8. Xiong, H. G., Tang, S. W., Tang, H. L., & Zou, P. (2008). The structure and properties of a starch-based biodegradable film. Carbohydr. Polym., 71, 263-268.10.1016/j.carbpol.2007.05.035Search in Google Scholar

9. Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and biodegradability. Carbohydr. Polym., 85, 1-16.10.1016/j.carbpol.2011.01.030Search in Google Scholar

10. Chai, W. -L., Chow, J. -D., & Chen, Ch. -Ch. (2012). Effects of modified starch and different molecular weight polyvinyl alcohols on biodegradable characteristics of polyvinyl alcohol/starch blends. J. Polym. Environ., 20, 550-564.10.1007/s10924-012-0419-4Search in Google Scholar

11. Jiang, X., Jiang, T., Gan, L., Zhang, X., Dai, H., & Zhang, X. (2012). The plasticizing mechanism and effect of calcium chloride on starch/poly(vinylalcohol) fi lms. Carbohydr. Polym., 90, 1677-1684.10.1016/j.carbpol.2012.07.05022944433Search in Google Scholar

12. Chen, Y., Cao, X., Chang, P. R., & Huneault, M. A. (2008). Comparative study on the fi lms of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr. Polym., 73, 8-17.10.1016/j.carbpol.2007.10.015Search in Google Scholar

13. Russo, M. A. L., O’Sullivan, C., Rounsefell, B., Halley, P. J., Truss, R., & Clarke, W. P. (2009). The anaerobic degradability of thermoplastic starch: polyvinyl alcohol blends: potential biodegradable food packaging material. Bioresour. Technol., 100, 1705-1710.10.1016/j.biortech.2008.09.02618990564Search in Google Scholar

14. Das, K., Ray, D., Bandyopadhyay, N. R., Sahoo, S., Mohanty, A. K., & Misra, M. (2011). Physicomechanical properties of the jute micro/nanofi bril reinforce starch/polyvinyl alcohol biocomposite films. Composites B, 42, 376-381.10.1016/j.compositesb.2010.12.017Search in Google Scholar

15. Yoon, S. -D., Park, M. -H., & Byun, H. -S. (2012). Mechanical and water barrier properties of starch/PVA composite fi lms by adding nano-sized poly(methyl methacrylate-co-acrylamide) particles. Carbohydr. Polym., 87, 676-686.10.1016/j.carbpol.2011.08.046Search in Google Scholar

16. Zhou, J., Ma, Y., Ren, L., Tong, J., Liu, Z., & Xie, L. (2009). Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydr. Polym., 76, 632-638.10.1016/j.carbpol.2008.11.028Search in Google Scholar

17. Khan, M. A., Bhattacharia, S. K., Kader, M. A., & Bahari, K. (2006). Preparation and characterization of ultra violet (UV) radiation cured bio-degradable films of sago starch/PVA blend. Carbohydr. Polym., 63, 500-506.10.1016/j.carbpol.2005.10.019Search in Google Scholar

18. Rahmat, A. R., Rahman, W. A., Sin, L. T., & Yussuf, A. A. (2009). Approaches to improve compatibility of starch filled polymer system: a review. Mater. Sci. Eng. C-Mater. Biol. Appl., 29, 2370.10.1016/j.msec.2009.06.009Search in Google Scholar

19. Senna, M. M., El-Shahat, H. A., & El Naggar, A. W. M. (2011). Characterization of gamma irradiated plasticized starch/poly(vinyl alcohol) (PLST/PVA) blends and their application as protected edible materials. J. Polym. Res., 18, 763-771.10.1007/s10965-010-9473-6Search in Google Scholar

20. Parvin, F., Khan, M., Saadat, A. H. M., Khan, M. A. H., Islam, J. M. M., Ahmed, M., & Gafur, M. A. (2011). Preparation and characterization of gamma irradiated sugar containing starch/poly(vinyl alcohol)-based blend fi lms. J. Polym. Environ., 19, 1013-1022.10.1007/s10924-011-0357-6Search in Google Scholar

21. Zhai, M., Yoshii, F., & Kume, T. (2003). Radiation modification of starch-based plastic sheets. Carbohydr. Polym., 52, 311-317.10.1016/S0144-8617(02)00292-8Search in Google Scholar

22. Zhai, M., Zhao, L., Yoshii, F., & Kume, T. (2004). Study of antibacterial starch/chitosan blend film under the action of irradiation. Carbohydr. Polym., 57, 83-88.10.1016/j.carbpol.2004.04.003Search in Google Scholar

23. Lepifre, S., Baumberger, S., Pollet, B., Cazaux, F., Coqueret, X., & Lapierre, C. (2004). Reactivity of sulfur free alkali lignins within starch films. Ind. Crop. Prod., 20, 219-230.10.1016/j.indcrop.2004.04.023Search in Google Scholar

24. Kang, H. J., Jo, Ch., Lee, N. Y., Kwon, J. H., & Byun, M. W. (2005). A combination of gamma irradiation and CaCl2 immersion for a pectin-based biodegradable film. Carbohydr. Polym., 60, 547-551.10.1016/j.carbpol.2005.02.016Search in Google Scholar

25. Kang, H., Lee, N. Y., Kwon, J. H., & Byun, M. W. (2005). Pectin and gelatin based film. Effect of gamma irradiation on the mechanical properties and biodegradation. Radiat. Phys. Chem., 72, 745-750.10.1016/j.radphyschem.2004.05.045Search in Google Scholar

26. Kober, E., Gonzalez, M. E., Gavioli, N., & Salmoral, E. M. (2007). Modification of water absorption capacity of a plastic based on bean protein using gamma10.1016/j.radphyschem.2006.05.017Search in Google Scholar

irradiated starches as additives. Radiat. Phys. Chem., 76, 55-60.Search in Google Scholar

27. Khan, R. A., Salmieri, S., Dussault, D., Uribe-Calderon, J., Khamal, M. R., Safrany, A., & Lacroix, M. (2010). Production of nanocellulose-reinforced methylcellulose-based biodegradable fi lms. J. Agric. Food Chem., 58, 7878-7885.10.1021/jf100685320545366Search in Google Scholar

28. Ryzhkova, A., Jarzak, U., Schäffer, A., Bämer, M., & Swiderek, P. (2011). Modifi cation of surface properties of thin polysaccharide fi lms by low energy electron exposure. Carbohydr. Polym., 83, 608-615.10.1016/j.carbpol.2010.08.029Search in Google Scholar

29. El Sayed, A. M., Diab, H. M., & El-Mallawany, R. (2013). Controlling the dielectric and optical properties of PVA/PEG polymer blend via e-beam irradiation. J. Polym. Res., 20, 255. DOI: 10.1007/s10965-013-0255-9.10.1007/s10965-013-0255-9Search in Google Scholar

30. Ravindrahary, I. V., Rajashekhar, F. B., Praveena, S. D., & Ganesh, S. (2015). Impact of electron beam irradiation on free-volume related microstructural properties of PVA:NaBr polymer composites Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 342, 29-38.Search in Google Scholar

31. Stoica-Guzun, A., Stroescu, M., Jipa, J., Dobre, L., & Zaharescu, T. (2013). Effect of γ irradiation on poly(winyl alcohol) and bacterial cellulose composites used as packaging materials. Radiat. Phys. Chem., 84, 200-204.10.1016/j.radphyschem.2012.06.017Search in Google Scholar

32. Haji-Saeid, M., Sampa, M. H. O., & Chmielewski, A. G. (2007). Radiation treatment for sterilization of packaging materials. Radiat. Phys. Chem., 76, 1535-1541.10.1016/j.radphyschem.2007.02.068Search in Google Scholar

33. Chmielewski, A. G. (2006). Packaging for food irradiation. Warsaw: Institute of Nuclear Chemistry and Technology. (Raporty IChTJ. Seria B nr 1/2006).Search in Google Scholar

34. Cieśla, K., & Eliasson, A. -C. (2007). DSC studies of gamma irradiation effect on the amylose-lipid complex formed in wheat and potato starches. Acta Aliment. Hung., 36(1), 111-126.10.1556/AAlim.36.2007.1.12Search in Google Scholar

35. Cieśla, K. (2009). Transformation of supramolecular structure initialised in natural polymers by gamma irradiation. Warsaw: Institute of Nuclear Chemistry and Technology (in Polish).Search in Google Scholar

36. Aguillera, J. M., & Rojas, E. (1996). Rheological, thermal and microstructural properties of whey protein - cassava starch gels. J. Food. Sci., 61, 962-966.10.1111/j.1365-2621.1996.tb10911.xSearch in Google Scholar

37. Zagórski, Z. P., & Rafalski, A. (1998). Free radicals in irradiated unstabilized polypropylene, as seen by DRS absorption-spectrophotometry. Radiat. Phys. Chem., 52, 257-260.10.1016/S0969-806X(98)00151-0Search in Google Scholar

38. Głuszewski, W., & Zagórski, Z. (2008). Radiation effects in polypropylene/polystyrene blends as the model of aromatic protection effects. Nukleonika, 53, 22-25.Search in Google Scholar

39. Cieśla, K., & Sartowska, B. (2015). Modification of the microstructure of the films formed by gamma irradiated starch examined by SEM. Radiat. Phys. Chem. DOI: 10.1016/j.radphyschem.2015.04.027.10.1016/j.radphyschem.2015.04.027Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo