Open Access

EMR-related problems at the interface between the crystal field Hamiltonians and the zero-field splitting Hamiltonians


Cite

1. Figgis, B. N., & Hitchman, M. A. (2000). Ligand field theory and its applications. New York: Wiley-VCH.Search in Google Scholar

2. Mulak, J., & Gajek, Z. (2000). The effective crystal field potential. Amsterdam: Elsevier.Search in Google Scholar

3. Newman, D. J., & Ng, B. (Eds.) (2000). Crystal field handbook. Cambridge: Cambridge University Press.10.1017/CBO9780511524295Search in Google Scholar

4. Wildner, M., Andrut, M., & Rudowicz, C. (2004). Optical absorption spectroscopy in geosciences. Part I: Basic concepts of crystal field theory. In A. Beran & E. Libowitzky (Eds.), Spectroscopic methods in mineralogyEuropean Mineralogical Union Notes in Mineralogy. (Vol. 6, Chapter 3, pp. 93–143). Budapest: Eötvös University Press.Search in Google Scholar

5. Liu, G., & Jacquier, B. (Eds.). (2005). Spectroscopic properties of rare earths in optical materials. Berlin: Tsinghua University Press and Springer.Search in Google Scholar

6. Weil, J. A., Bolton, J. R., & Wertz, J. E. (1994). Electron paramagnetic resonance, elemental theory and practical applications. New York: Wiley.Search in Google Scholar

7. Bencini, A., & Gatteschi, D. (1990). EPR of exchange coupled systems. Berlin: Springer.Search in Google Scholar

8. Mabbs, F. E., & Collison, D. (1992). Electron paramagnetic resonance of d transition-metal compounds. Amsterdam: Elsevier.Search in Google Scholar

9. Misra, S. K. (Ed.) (2011). Multifrequency electron paramagnetic resonance. Weinheim: Wiley-VCH.10.1002/9783527633531Search in Google Scholar

10. Boča, R. (1999). Theoretical foundations of molecular magnetism. Amsterdam: Elsevier.Search in Google Scholar

11. Buschow, K. H. J., & de Boer, F. R. (2003). Physics of magnetism and magnetic materials. New York: Kluwer Academic.10.1007/b100503Search in Google Scholar

12. Boča, R. (2006). Magnetic parameters and magnetic functions in mononuclear complexes beyond the spin-Hamiltonian formalism. Struct. Bond., 117, 1–264.10.1007/b136907Search in Google Scholar

13. Gatteschi, D., Sessoli, R., & Villain, J. (2006). Molecular nanomagnets. Oxford: Oxford University Press.10.1093/acprof:oso/9780198567530.001.0001Search in Google Scholar

14. Rudowicz, C., & Karbowiak, M. (2014). Terminological confusions and problems at the interface between the crystal field Hamiltonians and the zero-field splitting Hamiltonians – survey of the CF=ZFS confusion in recent literature. Physica B, 451, 134–150.10.1016/j.physb.2014.06.018Search in Google Scholar

15. Rudowicz, C., & Karbowiak, M. (2015). Revealing the consequences and errors of substance arising from the inverse confusion between the crystal (ligand) field quantities and the zero-field splitting ones. Physica B, 456, 330–338.10.1016/j.physb.2014.09.011Search in Google Scholar

16. Sorace, L., Benelli, C., & Gatteschi, D. (2011). Lanthanides in molecular magnetism: old tools in a new field. Chem. Soc. Rev., 40, 3092–3104.10.1039/c0cs00185f21390351Search in Google Scholar

17. Rudowicz, C., & Karbowiak, M. (2015). Disentangling intricate web of interrelated notions at the interface between the physical (crystal field) Hamiltonians and the effective (spin) Hamiltonians. Coord. Chem. Rev., 287, 28–63.10.1016/j.ccr.2014.12.006Search in Google Scholar

18. Baldoví, J. J., Cardona-Serra, S., Clemente-Juan, J. M., Coronado, E., Gaita-Arino, A., & Palii, A. (2013). SIMPRE: A software package to calculate crystal field parameters, energy levels, and magnetic properties on mononuclear lanthanoid complexes based on charge distributions. J. Comput. Chem., 34, 1961–1967.10.1002/jcc.2334124000391Search in Google Scholar

19. Pandey, S., & Kripal, R. (2013). Zero-field splitting parameters of Cr3+ in lithium potassium sulphate at orthorhombic symmetry site. Acta Phys. Pol. A, 123, 101–105.10.12693/APhysPolA.123.101Search in Google Scholar

20. Rudowicz, C., & Karbowiak, M. (2014). Implications of invalid conversions between crystal-field splitting ones used in superposition model. Acta Phys. Pol. A, 125, 1215–1219.10.12693/APhysPolA.125.1215Search in Google Scholar

21. Karbowiak, M., & Rudowicz, C. (2014). Software package SIMPRE – revisited. J. Comput. Chem., 35, 1935–1941.10.1002/jcc.2370025082729Search in Google Scholar

22. Solano-Peralta, A., Sosa-Torres, M. E., Flores-Alamo, M., El-Mkami, H., Smith, G. M., Toscano, R. A., & Nakamura, T. (2004). High-field EPR study and crystal and molecular structure of trans-RSSR-[CrCl2 (cyclam).] nX (X = ZnCl 42−, Cl and Cl·4H2O·0.5HCl). Dalton Trans., 2004, 2444–2449.10.1039/B405789A15303157Search in Google Scholar

23. Kowalczyk, R. M., Kemp, T. F., Walker, D., Pike, K. J., Thomas, P. A., Kreisel, J., Dupree, R., Newton, M. E., Hanna, J. V., & Smith, M. E. (2011). A variable temperature solid-state nuclear magnetic resonance, electron paramagnetic resonance and Raman scattering study of molecular dynamics in ferroelectric fluorides. J. Phys.-Condens. Matter, 23, 315402(16pp).10.1088/0953-8984/23/31/31540221778562Search in Google Scholar

24. Muralidhara, R. S., Kesavulu, C. R., Rao, J. L., Anavekar, R. V., & Chakradhar, R. P. S. (2010). EPR and optical absorption studies of Fe3+ ions in sodium borophosphate glasses. J. Phys. Chem. Solids, 71, 1651–1655.10.1016/j.jpcs.2010.09.013Search in Google Scholar

25. Padlyak, B. V., Wojtowicz, W., Adamiv, V. T., Burak, Y. V., & Teslyuk, I. M. (2010). EPR spectroscopy of the Mn2+ and Cu2+ centres in lithium and potassium-lithium tetraborate glasses. Acta Phys. Pol. A, 117, 122–125.10.12693/APhysPolA.117.122Search in Google Scholar

26. Singh, R. K., & Srinivasan, A. (2010). EPR and magnetic susceptibility studies of iron ions in ZnOFe2 O3-SiO2-CaO-P2O5-Na2O glasses. J. Magn. Magn. Mater., 322, 2018–2022.10.1016/j.jmmm.2010.01.026Search in Google Scholar

27. Antal, A., Janossy, A., Forro, L., Vertelman, E. J. M., van Koningsbruggen, P. J., & van Loosdrecht, P. H. M. (2010). Origin of the ESR spectrum in the Prussian blue analog RbMn[Fe(CN)6]·H2O. Phys. Rev. B, 82, 14422(5pp).Search in Google Scholar

28. Nagy, K. L., Quintavalle, D., Feher, T., & Janossy, A. (2011). Multipurpose high-frequency ESR spectrometer for condensed matter research. Appl. Magn. Reson., 40, 47–63.10.1007/s00723-010-0182-4Search in Google Scholar

29. Nagy, K. L., Náfrádi, B., Kushch, N. D., Yagubskii, E. B., Herdtweck, E., Fehér, T., Kiss, L. F., Forró, L., & Jánossy, A. (2009). Multifrequency ESR in ET2 MnCu[N(CN)2]4: A radical cation salt with quasi-two-dimensional magnetic layers in a three-dimensional polymeric structure. Phys. Rev. B, 80, 104407(8pp).Search in Google Scholar

30. Aleshkevych, P., Fink-Finowicki, J., Gutowski, M., & Szymczak, H. (2010). EPR of Mn2+ in the kagomé staircase compound Mg2.97Mn0.03V2O8. J. Magn. Reson., 205, 69–74.10.1016/j.jmr.2010.04.00420430660Search in Google Scholar

31. Garcia, F. A., Venegas, P. A., Pagliuso, P. G., Rettori, C., Fisk, Z., Schlottmann, P., & Oseroff, S. B. (2011). Thermally activated exchange narrowing of the Gd3+ ESR fine structure in a single crystal of Ce1-xGdxFe4P12 (x ≈ 0.001) skutterudite. Phys. Rev. B, 84, 125116(7pp).10.1103/PhysRevB.84.125116Search in Google Scholar

32. Güler, S., Rameev, B., Khaibullin, R. I., Lopatin, O. N., & Aktaş, B. (2010). EPR study of Mn-implanted single crystal plates of TiO2 rutile. J. Magn. Magn. Mater., 322, L13–L17.10.1016/j.jmmm.2009.12.014Search in Google Scholar

33. Schweiger, A., & Jeschke, G. (2001). Principles of pulse electron paramagnetic resonance. Oxford: Oxford University Press.Search in Google Scholar

34. Gerson, F., & Huber, W. (2003). Electron spin resonance spectroscopy of organic radicals. Weinheim: Wiley-VCH.Search in Google Scholar

35. Kaupp, M., Buhl, M., & Malkin, V. G. (2004). Calculation of NMR and EPR parameters. Weinheim: Wiley-VCH.10.1002/3527601678Search in Google Scholar

36. Lushington, G. H. (2004). The effective spin Hamiltonian concept from a quantum chemical perspective. In M. Kaupp, M. Buhl & V. G. Malkin (Eds.), Calculation of NMR and EPR parameters (Chapter 4). Weinheim: Wiley-VCH.Search in Google Scholar

37. Neese, F. (2004). Zero-field splitting. In M. Kaupp, M. Buhl & V. G. Malkin (Eds.), Calculation of NMR and EPR parameters (Chapter 34). Weinheim: Wiley-VCH.Search in Google Scholar

38. Mobius, K., & Savitsky, A. (2009). High-field EPR spectroscopy on proteins and their model systems characterization of transient paramagnetic states. Cambridge: The Royal Society of Chemistry.Search in Google Scholar

39. Jeschke, G., & Schlick, S. (2006). Continuous-wave and pulsed ESR methods. In S. Schlick (Ed.), Advanced ESR methods in polymer research. New Jersey, USA: John Wiley & Sons.Search in Google Scholar

40. Rudowicz, C. (2008). Clarification of the confusion concerning the crystal-field quantities vs. the zero-field splitting quantities in magnetism studies: Part II – survey of literature dealing with model studies of spin systems. Physica B, 403, 2312–2330.10.1016/j.physb.2007.12.011Search in Google Scholar

41. Rudowicz, C., & Sung, H. W. F. (2001). Can the electron magnetic resonance (EMR) techniques measure the crystal (ligand) field parameters? Physica B, 300, 1–26.10.1016/S0921-4526(01)00568-3Search in Google Scholar

42. Rudowicz, C. (2009). Truncated forms of the second-rank orthorhombic Hamiltonians used in magnetism and electron magnetic resonance (EMR) studies are invalid – why it went unnoticed for so long? J. Magn. Magn. Mater., 321, 2946–2955.10.1016/j.jmmm.2009.04.060Search in Google Scholar

43. Rieger, P. H. (2007). Electron spin resonance analysis and interpretation. Cambridge: The Royal Society of Chemistry.Search in Google Scholar

44. Lund, A., Shiotani, M., & Shimada, S. (2011). Principles and applications of ESR spectroscopy. Dordrecht: Springer Science+Business Media B.V.10.1007/978-1-4020-5344-3Search in Google Scholar

45. Brustolon, M., & Giamello, E. (2009). Electron paramagnetic resonance: A practitioner’s toolkit. New Jersey, USA: John Wiley & Sons.10.1002/9780470432235Search in Google Scholar

46. Tang, J. K., Wang, Q. L., Si, S. F., Liao, D. Z., Jiang, Z. H., Yan, S. P., & Cheng, P. (2005). A novel tetranuclear lanthanide(III)-copper(II) complex of the macrocyclic oxamide [PrCu3](macrocyclic oxamide = 1,4,8,11-tetraazacyclotradecanne-2,3-dione): synthesis, structure and magnetism. Inorg. Chim. Acta, 358, 325–330.10.1016/j.ica.2004.06.067Search in Google Scholar

47. Li, B., Gu, W., Zhang, L. Z., Qu, J., Ma, Z. P., Liu, X., & Liao, D. Z. (2006). [Ln2(C2O4)2 (pyzc)2 (H2O)2]n[Ln = Pr (1), Er (2)]: Novel two-dimensional lanthanide coordination polymers with 2-pyrazinecarboxylate and oxalate. Inorg. Chem., 45, 10425–10427.10.1021/ic061287p17173391Search in Google Scholar

48. Ouyang, Y., Zhang, W., Xu, N., Xu, G. F., Liao, D. Z., Yoshimura, K., Yan, S. P., & Cheng, P. (2007). Threedimensional 3d-4f polymers containing heterometallic rings: Syntheses, structures, and magnetic properties. Inorg. Chem., 46, 8454–8456.10.1021/ic701097k17854175Search in Google Scholar

49. Xu, N., Shi, W., Liao, D. Z., Yan, S. P., & Cheng, P. (2008). Template synthesis of lanthanide (Pr, Nd, Gd) coordination polymers with 2-hydroxynicotinic acid exhibiting ferro-/antiferromagnetic interaction. Inorg. Chem., 47, 8748–8756.10.1021/ic800623v18722421Search in Google Scholar

50. Hou, Y. L., Xiong, G., Shen, B., Zhao, B., Chen, Z., & Cui, J. Z. (2013). Structures, luminescent and magnetic properties of six lanthanide–organic frameworks: observation of slow magnetic relaxation behavior in the DyIII compound. Dalton Trans., 42, 3587–3596.10.1039/c2dt32390g23292215Search in Google Scholar

51. AlDamen, M. A., Cardona-Serra, S., Clemente-Juan, J. M., Coronado, E., Martí-Gastaldo, C., Gaita-Arino, A., Luis, F., & Montero, O. (2009). Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9− and [Ln(β2-SiW11O39)2]13-(LnIII = Tb, Dy, Ho, Er, Tm, and Yb). Inorg. Chem., 48, 3467–3479.10.1021/ic801630z19361246Search in Google Scholar

52. Luzon, J., Bernot, K., Hewitt, I. J., Anson, C. E., Powell, A. K., & Sessoli, R. (2008). Spin chirality in a molecular dysprosium: the archetype of the noncollinear ising model. Phys. Rev. Lett., 100, 247205(4pp).10.1103/PhysRevLett.100.24720518643625Search in Google Scholar

53. Bartolomé, J., Filoti, G., Kuncser, V., Schinteie, G., Mereacre, V., Anson, C. E., Powell, A. K., Prodius, D., & Turta, C. (2009). Magnetostructural correlations in the tetranuclear series of {Fe3LnO2} butterfly core clusters: magnetic and Mössbauer spectroscopic study. Phys. Rev. B, 80, 014430(16pp).10.1103/PhysRevB.80.014430Search in Google Scholar

54. Pointillart, F., Le Guennic, B., Golhen, S., Cador, O., Maury, O., & Ouahab, L. (2013). High nuclearity complexes of lanthanide involving tetrathiafulvalene ligands: structural, magnetic, and photophysical properties. Inorg. Chem., 52, 1610–1620.10.1021/ic302532f23323869Search in Google Scholar

55. Bayrakçeken, F., Demir, O. J., & Karaaslan, İ. Ş. (2007). Theoretical investigations of the specific heat functions for the orthorhombic Nd+3 centers in some crystals. Spectrochim. Acta Part A, 66, 462–466.10.1016/j.saa.2006.03.02617084660Search in Google Scholar

56. Bayrakçeken, F., Demir, O. J., & Karaaslan, İ. Ş. (2007). Specific heat functions for the orthorhombic Nd3+ in scheelite type of crystals. Spectrochim. Acta Part A, 66, 1291–1294.10.1016/j.saa.2006.05.03316920391Search in Google Scholar

57. Kim, Y. H., Yeom, T. H., Eguchi, H., & Seidel, G. M. (2007). Magnetic properties of erbium in single crystal Bi2Te3. J. Magn. Magn. Mater., 310, 1703–1705.10.1016/j.jmmm.2006.10.538Search in Google Scholar

58. Pedersen, K. S., Ungur, L., Sigrist, M., Sundt, A., Schau-Magnussen, M., Vieru, V., Mutka, H., Rols, S., Weihe, H., Waldmann, O., Chibotaru, L. F., Bendix, J., & Dreiser, J. (2014). Modifying the properties of 4f single-ion magnets by peripheral ligand functionalisation. Chem. Sci., 5, 1650–1660.10.1039/C3SC53044BSearch in Google Scholar

59. Rudowicz, C. (2008). Clarification of terminological confusion concerning the crystal field quantities vs the effective spin Hamiltonian and zero-field splitting quantities in the papers by Bayrakçeken et al. [Spectrochim. Acta Part A 66 (2007). 462 & 1291]. Spectrochim. Acta Part A, 71, 1623–1626.10.1016/j.saa.2008.04.02518547860Search in Google Scholar

60. Baldoví, J. J., Cardona-Serra, S., Clemente-Juan, J. M., Coronado, A., Gaita-Ariñ o, A., & Palii, A. (2012). Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes. Inorg. Chem., 51, 12565–12574.10.1021/ic302068c23102271Search in Google Scholar

61. Baldoví, J. J., Borrás-Almenar, J. J., Clemente-Juan, J. M., Coronado, E., & Gaita-Ariño, A. (2012). Modeling the properties of lanthanoid single-ion magnets using an effective point-charge approach. Dalton Trans., 41, 13705–13710.10.1039/c2dt31411h22961120Search in Google Scholar

62. Baldoví, J. J., Cardona-Serra, S., Clemente-Juan, J. M., Coronado, E., & Gaita-Ariño, A. (2013). Modeling the properties of uranium-based single ion magnets. Chem. Sci., 4, 938–946.10.1039/C2SC21490CSearch in Google Scholar

63. Baldoví, J. J., Clemente-Juan, J. J., Coronado, E., & Gaita-Ariñ o, A. (2013). Two pyrazolylborate dysprosium(III) and neodymium(III), single ion magnets modeled by a radial effective charge approach. Polyhedron, 66, 39–42.10.1016/j.poly.2013.01.034Search in Google Scholar

64. Yamashita, A., Watanabe, A., Akine, S., Nabeshima, T., Nakano, M., Yamamura, T., & Kajiwara, T. (2011). Wheel-shaped ErIIIZnII3 single-molecule magnet: A macrocyclic approach to designing magnetic anisotropy. Angew. Chem. Int. Ed., 50, 4016–4019.10.1002/anie.20100818021433235Search in Google Scholar

65. Chilton, N. F. (2013). PHI User Manual v1.7.Search in Google Scholar

66. Clemente-Juan, J. M., Coronado, E., & Gaita-Arino, A. (2012). Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev., 41, 7464–7478.10.1039/c2cs35205b22948854Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other