1. bookVolume 60 (2015): Issue 3 (September 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Synthesis and evaluation of radiolabeled, folic acid-PEG conjugated, amino silane coated magnetic nanoparticles in tumor bearing Balb/C mice

Published Online: 06 Aug 2015
Volume & Issue: Volume 60 (2015) - Issue 3 (September 2015)
Page range: 497 - 502
Received: 23 Dec 2014
Accepted: 01 Jun 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

To design a potent agent for positron emission tomography/magnetic resonance imaging (PET/MRI) imaging and targeted magnetic hyperthermia-radioisotope cancer therapy radiolabeled surface modified superparamagnetic iron oxide nanoparticles (SPIONs) were used as nanocarriers. Folic acid was conjugated for increasing selective cellular binding and internalization through receptor-mediated endocytosis. SPIONs were synthesized by the thermal decomposition of tris (acetylacetonato) iron (III) to achieve narrow and uniform nanoparticles. To increase the biocompatibility of SPIONs, they were coated with (3-aminopropyl) triethoxysilane (APTES), and then conjugated with synthesized folic acid-polyethylene glycol (FA-PEG) through amine group of (3-aminopropyl) triethoxysilane. Finally, the particles were labeled with 64Cu (t1/2 = 12.7 h) using 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono (N-hydroxy succinimide ester) DOTA-NHS chelator. After the characterization of SPIONs, their cellular internalization was evaluated in folate receptor (FR) overexpressing KB (established from a HeLa cell contamination) and mouse fibroblast cell (MFB) lines. Eventually, active and passive targeting effects of complex were assessed in KB tumor-bearing Balb/C mice through biodistribution studies. Synthesized bare SPIONs had low toxicity effect on healthy cells, but surface modification increased their biocompatibility. Moreover, KB cells viability was reduced when using folate conjugated SPIONs due to FR-mediated endocytosis, while having little effect on healthy cells (MFB). Moreover, this radiotracer had tolerable in vivo characteristics and tumor uptake. In the receptor blocked case, tumor uptake was decreased, indicating FR-specific uptake in tumor tissue while enhanced permeability and retention effect was major mechanism for tumor uptake.

Keywords

1. Ting-Jung, C., Tsan-Hwang, C., Chiao-Y un, C., Sodio, C., & Hsu, N. (2009). Targeted herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J. Biol. Inorg. Chem., 14, 253–260. DOI: 10.1007/s00775-008-0445-9.10.1007/s00775-008-0445-918975017Search in Google Scholar

2. Brannon-Peppas, L., & Blanchette, J. O. (2012). Nanoparticle and targeted systems for cancer therapy. J. Adv. Drug Deliv. Rev., 64, 206–212. DOI: 10.1016/j.addr.2012.09.033.10.1016/j.addr.2012.09.033Search in Google Scholar

3. Guo, M., Que, C., Wang, C., Liu, X., Yan, H., & Liu, K. (2011). Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials, 32, 185–194. DOI: 10.1016/j.biomaterials.2010.09.077.10.1016/j.biomaterials.2010.09.07721067808Search in Google Scholar

4. Maeda, H., & Matsumura, Y. (1989). Tumouritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther. Drug Carr. System, 6, 193–210.Search in Google Scholar

5. Ohtsuka, N., Konno, T., Miyauchi, Y., & Maeda, H. (1987). Anticancer effects of arterial administration of the anticancer agent SMANCS with lipiodol on metastatic lymph nodes. Cancer, 59, 1560–1565. DOI: 10.1002/1097-0142(19870501)59:93.0.CO; 2-J.Search in Google Scholar

6. Feng, B., Hong, R. Y., Wang, L. S., Guoc, L., Li, H. Z., Dingd, J., Zhenge, Y., & Wei, D. G. (2008). Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging B. Colloid. Surf. A-Physicochem. Eng. Asp., 328, 52–59. DOI: 10.1016/j.colsurfa.2008.06.024.10.1016/j.colsurfa.2008.06.024Search in Google Scholar

7. Yoo, M. K., Park, I. K., Lim, H. T., Lee, S. J., Jiang, H. L., Kim, Y. K., Choi, Y. J., Cho, M. H., & Cho, C. S. (2012). Folate-PEG-superparamagnetic iron oxide nanoparticles for lung cancer imaging. Acta Biomater., 8, 3005–3013. DOI: 10.1016/j.actbio.2012.04.029.10.1016/j.actbio.2012.04.02922543005Search in Google Scholar

8. Chem, T. J., Cheng, T. W., Hung, Y. C., Lin, K. T., Liu, G. C., & Wang, Y. M. (2008) Targeted folic acid-PEG nanoparticles for noninvasive imaging of folate receptor by MRI. J. Biomed. Mater. Res. Part A, 87, 165–75. DOI: 10.1002/jbm.a.31752.10.1002/jbm.a.3175218085650Search in Google Scholar

9. Sun, C., Sze, R., & Zhang, M. Q. (2006). Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J. Biomed. Mater. Res. Part A, 78(3), 550–557. DOI: 10.1002/jbm.a.30781.10.1002/jbm.a.3078116736484Search in Google Scholar

10. Walczak, P., Kedziorek, D. A., Gilad, A. A., Barnett, B. P., & Bulte, J. W. (2007). Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover. Magn. Reson. Med., 58, 261–269. DOI: 10.1002/mrm.21412.10.1002/mrm.21412Search in Google Scholar

11. Montet, X., Montet-Abou, K., Reynolds, F., Weissleder, R., & Josephson, L. (2006). Nanoparticle imaging of integrins on tumor cells. Neoplasia, 8, 214–222. DOI: 10.1593/neo.05769.10.1593/neo.05769157852116611415Search in Google Scholar

12. Lee, J. H., Huh, Y. M., Jun, Y. W., Seo, J. W., Jang, J. T., Song, H. T., Kim, S., Cho, E. J., Yoon, H. G., Suh, J. S., & Cheon, J. (2007). Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med., 13, 95–99. DOI: 10.1038/nm1467.10.1038/nm146717187073Search in Google Scholar

13. Fukukawa, K., Rossin, R., Hagooly, A., Pressly, E. D., Hunt, J. N., Messmore, B. W., Wooley, K. L., Welch, M. J., & Hawker, C. J. (2008). Synthesis and characterization of core-shell star copolymers for in vivo PET imaging applications. Biomacromolecules, 9, 1329–1339. DOI: 10.1021/bm7014152.10.1021/bm7014152Search in Google Scholar

14. Rossin, R., Muro, S., Welch, M. J., Muzykantov, V. R., & Schuster, D. P. (2008). In vivo imaging of 64Cu-labeled polymer nanoparticles targeted to the lung endothelium. J. Nucl. Med., 49, 103–111. DOI: 10.2967/jnumed.107.045302.10.2967/jnumed.107.045302Search in Google Scholar

15. Sun, G., Hagooly, A., Xu, J., Nystrom, A. M., Li, Z., Rossin, R., Moore, D. A., Wooley, K. L., & Welch, M. J. (2008). Facile, efficient approach to accomplish tunable chemistries and variable biodistributions for shell crosslinked nanoparticles. Biomacromolecules, 9, 1997–2006. DOI: 10.1021/bm800246x.10.1021/bm800246xSearch in Google Scholar

16. Sun, X., Rossin, R., Turner, J. L., Becker, M. L., Joralemon, M. J., Welch, M. J., & Wooley, K. L. (2005). An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules, 6, 2541–2554. DOI: 10.1021/bm050260e.10.1021/bm050260eSearch in Google Scholar

17. Sun, X., & Anderson, C. (2004). Production and applications of copper-64 radiopharmaceuticals. Method. Enzymol., 386, 237–261. DOI: 10.1016/S0076-6879(04)86011-7.10.1016/S0076-6879(04)86011-7Search in Google Scholar

18. McCarthy, D., Shefer, R., Klinkowstein, R., Bass, L., Margeneau, W., Cutler, C., Anderson, C., & Welch, M. (1997). Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl. Med. Biol., 24, 35–43. DOI: 10.1016/S0969-8051(96)00157-6.10.1016/S0969-8051(96)00157-6Search in Google Scholar

19. McCarthy, D., Bass, L., Cutler, P., Shefer, R., Klinkowstein, R., Herrero, P., Lewis, J., Cutler, C., Anderson, C., & Welch, M. (1999). High purity production and potential applications of copper-60 and copper-61. Nucl. Med. Biol., 26, 351–358. DOI: 10.1016/S0969-8051(98)00113-9.10.1016/S0969-8051(98)00113-9Search in Google Scholar

20. Glaus, C., Rossin, R., Welch, M. J., & Gang, Bao (2010). In vivo evaluation of 64Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug. Chem., 21(4), 715–722. DOI: 10.1021/bc900511j.10.1021/bc900511j286543620353170Search in Google Scholar

21. Heidari Majd, M., Asgari, D., Barara, J., Valizadeh, H., Kafil, V., Abadpour, A., Moumivand, E., Shahbazi Mojarrad, J., Rashidi, M. R., Coukos, G., & Omidi, Y. (2013). Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. J. Colloid. Surf. B-Biointerfaces, 106, 117–125. DOI: 10.1016/j.colsurfb.2013.01.051.10.1016/j.colsurfb.2013.01.05123434700Search in Google Scholar

22. Yang, X., Hong, H., Grailer, J. J., Rowland, I. J., Javadi, A., Hurley, S. A., Xiao, Y., Yang, Y., Zhang, Y., Nickles, R. J., Cai, W., Steeber, D. A., & Gonge, S. (2011). RGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and SPECT/MR imaging. J. Biomater., 32(17), 4151–4160. DOI: 10.1016/j.biomaterials.2011.02.006.10.1016/j.biomaterials.2011.02.006329287621367450Search in Google Scholar

23. Xu, Z., Shen, C., Hou, Y., Gao, H., & Sun, S. (2009). Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. J. Chem. Mater., 21, 1778–1780. DOI: 10.1021/cm802978z.10.1021/cm802978zSearch in Google Scholar

24. Xie, J., Xu, C., Xu, Z., Hou, Y., Young, K. L., Wang, S. X., Pourmand, N., & Sun, S. (2006). Linking hydrophilic macromolecules to monodisperse magnetite (Fe3O4) nanoparticles via trichloro-s-triazine. J. Chem. Mater., 18(3), 5401–5403. DOI: 10.1021/cm061793c.10.1021/cm061793c217478518176627Search in Google Scholar

25. Müller, C., Forrer, F., & Schibli, R. (2008). SPECT study of folate receptor-positive malignant and normal tissues in mice using a novel 99mTc-radiofolate. J. Nucl. Med., 49, 310–317. DOI: 10.2967/jnumed.107.045856.10.2967/jnumed.107.04585618199624Search in Google Scholar

26. Rossin, R., Pan, D., Qi, K., Turner, J. L., Sun, X., Wooley, K. L., & Welch, M. J. (2005). 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation J. Nucl. Med., 46, 1210–1218.Search in Google Scholar

27. Zolata, H., Afarideh, H., & Abbasi-Davani, F. (2014). Radio-immunoconjugated, Dox-loaded, surface-modified superparamagnetic iron oxide nanoparticles (SPIONs) as a bioprobe for breast cancer tumor theranostics. J. Radioanal. Nucl. Chem., 301, 451–460. DOI: 10.1007/s10967-014-3101-6.10.1007/s10967-014-3101-6Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo