1. bookVolume 60 (2015): Issue 1 (March 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Magnetic nanowires (Fe, Fe-Co, Fe-Ni) – magnetic moment reorientation in respect of wires composition

Published Online: 12 Mar 2015
Volume & Issue: Volume 60 (2015) - Issue 1 (March 2015)
Page range: 63 - 67
Received: 18 Jun 2014
Accepted: 15 Nov 2014
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Magnetic nanowires of Fe, Fe-Co, and Fe-Ni alloy and layered structure were prepared by electrochemical alternating current (AC) deposition method. The morphology of the nanowires in and without the matrix was studied by energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. The wires either show strong dependence on the combination of elements deposition (alloy or layered) or chemical composition (Co or Ni). The magnetic properties of the nanostructures were determined on the basis of Mössbauer spectroscopy (MS).

Keywords

1. Ersen, O., Begin, S., Houlle, M., Amadou, J., Janowska, I., Greneche, J. M., Crucifix, C., & Pham-Huu, C. (2008). Microstructural investigation of magnetic CoFe2O4 nanowires inside carbon nanotubes by electron tomography. Nano Lett., 8, 1033–1040. DOI: 10.1021/nl072714e.10.1021/nl072714eSearch in Google Scholar

2. Peter, L., Casik, A., Vad, K., Toth-Kadar, E., Pekker, A., & Molnar, G. (2010). On the composition depth profile of electrodeposited Fe-Co-Ni alloys. Electrochim. Acta, 55, 4734–4741. DOI: 10.1016/j.electacta.2010.03.075.10.1016/j.electacta.2010.03.075Search in Google Scholar

3. Osaka, T. (2000). Electrodeposition of highly functional thin films for magnetic recording devices of the next century. Electrochim. Acta, 45, 3311–3321. DOI: 10.1016/S0013-4686(00)00407-2.10.1016/S0013-4686(00)00407-2Search in Google Scholar

4. Quemper, J. M., Nicolas, S., Gilles, J. P., Grandchamp, J. P., Bosseboeuf, A., Bourouina, T., & Dufour-Gergam, E. (1999). Permalloy electroplating through photoresist molds. Sens. Actuator, 74, 1–4. DOI: 10.1016/S0924-4247(98)00323-9.10.1016/S0924-4247(98)00323-9Search in Google Scholar

5. Munoz, A. G. Schiefer, C., Nentwig, Th., Man, W.-Y., & Kisker, E. (2007). Magneto impedance of electroplated NiFeMo/Cu microwires for magnetic sensors. J. Phys. D-Appl. Phys., 40, 5013–5020. DOI: 10.1088/0022-3727/40/17/001.10.1088/0022-3727/40/17/001Search in Google Scholar

6. Bauer, L. A., Birenbaum, N. S., & Meyer, G. J. (2004). Biological applications of high aspect ratio nanoparticles. Mater. Chem., 14, 517–526. DOI: 10.1039/b312655b.10.1039/b312655bSearch in Google Scholar

7. Niemirowicz, K., Swiecicka, I., Wilczewska, A. Z., Misztalewska, I., Kalska-Szostko, B., Bienias, K., Bucki, R., & Car, H. (2014). Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa. Int. J. Nanomed., 8(9), 2217–2224. DOI: 10.2147/IJN.S56588.10.2147/IJN.S56588402090524855358Search in Google Scholar

8. Kalska-Szostko, B., Orzechowska, E., & Wykowska, U. (2013). Organophosphorous modifications of multifunctional magnetic nanowires. Colloid Surf. B-Biointerfaces, 111, 509–516. DOI: 10.1016/j.colsurfb.2013.05.03.Search in Google Scholar

9. Kalska-Szostko, B., & Orzechowska, E. (2011). Preparation of magnetic nanowires modified with functional groups. Curr. Appl. Phys., 11(5), S103–S108. DOI: 10.1016/j.cap.2011.04.051.10.1016/j.cap.2011.04.051Search in Google Scholar

10. Liu, X., Zangari, G., & Shen, L. (2000). Electrodeposition of soft, high moment Co-Fe-Ni thin films. J. Appl. Phys., 87, 5410–5412. DOI: 10.1063/1.373359.10.1063/1.373359Search in Google Scholar

11. Kalska-Szostko, B., Brancewicz, E., Mazalski, P., Sveklo, J., Olszewski, W., Szymański, K., & Sidor, A. (2009). Electrochemical deposition of nanowires in porous alumina. Acta Phys. Pol. A, 115, 542–544.10.12693/APhysPolA.115.542Search in Google Scholar

12. Kalska-Szostko, B., Brancewicz, E., Olszewski, W., Szymański, K., Sidor, A., Sveklo, J., & Mazalski, P. (2009). Electrochemical preparation of magnetic nanowires. Solid State Phenom., 151, 190–196. DOI: 10.4028/www.scientific.net/SSP.151.190.10.4028/www.scientific.net/SSP.151.190Search in Google Scholar

13. Kalska-Szostko, B., & Orzechowska, E. (2011). Surface modification of core–shell nanowire with protein adsorption. Mater. Chem. Phys., 129, 256–260. DOI: 10.1016/j.matchemphys.2011.04.01.Search in Google Scholar

14. Saedi, A., & Ghorbani, M. (2005). Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template. Mater. Chem. Phys., 91, 417–423. DOI: 10.1016/j.matchemphys.2004.12.001.10.1016/j.matchemphys.2004.12.001Search in Google Scholar

15. Kalska-Szostko, B., Wykowska, U., Piekut, K., & Zambrzycka, E. (2013). Stability of iron (Fe) nanowires. Colloid Surf. A-Physiochem. Eng. Asp., 416, 66–72. DOI: 10.1016/j.colsurfa.2012.10.019.10.1016/j.colsurfa.2012.10.019Search in Google Scholar

16. Charlot, F., Gaffet, E., Zeghmati, B., Bernard, F., & Niepce, J. C. (1999). Mechanically activated synthesis studied by X-ray diffraction in the Fe-Al system. Mater. Sci. Eng. A, 263, 279–288. DOI: 10.1016/S0921-5093(98)01017-X.10.1016/S0921-5093(98)01017-XSearch in Google Scholar

17. Matveev, V. V., Baranov, D. A., Yurkov, G. Y., Akatiev, N. G., Dotsenko, I. P., & Gubin, S. P. (2006). Cobalt nanoparticles with preferential hcp structure: A confirmation by X-ray diffraction and NMR. Chem. Phys. Lett., 422, 402–405. DOI: 10.1016/j.cplett.2006.02.099.10.1016/j.cplett.2006.02.099Search in Google Scholar

18. Smirnov, A., Hausner, D., Laffers, R., Strongin, D. R., & Schoonen, M. A. A. (2008). Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle. Geochem. Trans., 9(5), 1–20. DOI: 10.1186/1467-4866-9-5.10.1186/1467-4866-9-5243095118489746Search in Google Scholar

19. Greenwood, N. N., & Gibb, T. C. (1971). Mössbauer spectroscopy. London: Chapman and Hall.10.1007/978-94-009-5697-1Search in Google Scholar

20. Korecki, J., & Gradmann, U. (1985). In situ Mossbauer analysis of hyperfine interaction near Fe (110) surfaces and interfaces. Phys. Rev. Lett., 55(22), 2491–2494. DOI: 10.1103/PhysRevLett.55.2491.10.1103/PhysRevLett.55.249110032158Search in Google Scholar

21. Li, Q. F., Wang, J. B., Yan, Z. J., & Xue, D. S. (2004). The effect of diameter on micro-magnetic properties of Fe0.68Ni0.32 nanowire arrays. J. Magn. Magn. Mater., 278, 323–327. DOI: 10.1016/j.jmmm.2003.12.1357.10.1016/j.jmmm.2003.12.1357Search in Google Scholar

22. de Oliveira, L. S., da Cunha, J. M. B., Spada, E. R., & Hallouche, B. (2007). Mössbauer spectroscopy and magnetic properties in thin films of FexNi100−x electroplated on silicon (1 0 0). Appl. Surf. Sci., 254, 347–350. DOI: 10.1016/j.apsusc.2007.07.093.10.1016/j.apsusc.2007.07.093Search in Google Scholar

23. Scorzelli, R. B., Souza Azevedo, I., Pereira, R. A., Perez, C. A. C., & Fernandes, A. A. R. (1994). Mössbauer spectroscopy study of the metallic particles extracted from the Antarctic chondrite Allan Hills-769. In Proceedings NIPR Symposium Antarct. Meteorites 7, 31 May–2 June 1993 (pp. 299–303). Tokyo: National Institute of Polar Research.Search in Google Scholar

24. Ping, J. Y., Rancourt, D. G., & Dunlap, R. A. (1992). Physical basis and break down of hyperfine field distribution analysis in fcc Fe-Ni (5–70 at%Fe). J. Magn. Magn. Mater., 103, 285–313. DOI: 10.1016/0304-8853(92)90201-X.10.1016/0304-8853(92)90201-XSearch in Google Scholar

25. Guenzburger, D., & Terrera, J. (2006). Theoretical investigation of Mössbauer hyperfine interactions in ordered FeNi and disordered Fe-Ni alloys. Hyperfine Interact., 168, 1159–1163. DOI: 10.1007/sI0751-006-9416-0.Search in Google Scholar

26. Häggström, L., Kalska, B., Blomquist, P., & Wappling, R. (2002). Magnetic anisotropy and magnetic fields in bcc Fe/Co (001) superlattices. J. Alloy. Compd., 347, 252–258. DOI: 10.1016/S0925-8388(02)00762-4.10.1016/S0925-8388(02)00762-4Search in Google Scholar

27. Kalska, B., Blomquist, P., Haggstrom, L., & Wappling, R. (2001). Interface roughness/intermixing and magnetic moments in a Fe/Co(001) superlattice. J. Phys.-Condens. Matter, 13, 2963–2970. DOI: 10.1088/0953-8984/13/13/310.10.1088/0953-8984/13/13/310Search in Google Scholar

28. Kalska, B., Haggstrom, L., Blomquist, P., & Wappling, R. (2000). Conversion electron Mössbauer spectroscopy studies of the magnetic moment distribution in Fe/V multilayers. J. Phys.-Condens. Matter, 12, 539–548. DOI: 10.1088/0953-8984/12/5/302.10.1088/0953-8984/12/5/302Search in Google Scholar

29. Hamrakulov, B., Kim, I., Lee, M. G., & Park, B. H. (2009). Electrodeposited Ni, Fe, Co and Cu single and multilayer nanowires arrays on anodic aluminium oxide template. Trans. Nonferrous Met. Soc. China, 19, 83–87. DOI: 10.1016/S1003-6326(10)60250-6.10.1016/S1003-6326(10)60250-6Search in Google Scholar

30. Leitao, D. C., Sousa, C. T., Ventura, J., Amaral, J. S., Carpineiro, F., Pirota, K. R., Vazquez, M., Sousa, J. B., & Aroujo, J. P. (2008). Characterization of electrodeposited Ni and Ni80Fe20 nanowires. J. Non-Cryst. Solids, 354, 5241–5243. DOI: 10.1016/j.jnoncrysol.2008.05.088.10.1016/j.jnoncrysol.2008.05.088Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo