1. bookVolume 15 (2015): Issue 6 (December 2015)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Theoretical and Experimental Research of Error of Method of Thermocouple with Controlled Profile of Temperature Field

Published Online: 30 Dec 2015
Volume & Issue: Volume 15 (2015) - Issue 6 (December 2015)
Page range: 304 - 312
Received: 19 Sep 2015
Accepted: 01 Dec 2015
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

The method of study and experimental researches of the error of method of the thermocouple with controlled profile of temperature field along the main thermocouple are considered in this paper. Experimentally determined values of error of method are compared to the theoretical estimations done using Newton’s law of cooling. They converge well.

Keywords

[1] Lutsyk, Y., Hook, O., Lakh, O., Stadnyk, B. (2006). Temperature Measurements: Theory and Practice. Lviv, Ukraine: Beskyd Bit. (in Ukrainian)Search in Google Scholar

[2] Webster, J. (1999). Measurement, Instrumentation, and Sensors Handbook. CRC Press.Search in Google Scholar

[3] Habisreuther, T., Elsmann, T., Pan, Z., Graf, A., Willsch, R., Schmidt, M.A. (2015). Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Applied Thermal Engineering, 91, 860-865.10.1016/j.applthermaleng.2015.08.096Search in Google Scholar

[4] Yi, X., Liu, C. (2009). Development of high-precision temperature measurement system based on ARM. In Proceedings of 9th International Conference on Electronic Measurement and Instruments, 16-19 August, 2009, Beijing, China. IEEE, 795-799.Search in Google Scholar

[5] Koči, V., Koči, J., Korecky, T., Maděra, J., Černy, R. (2015). Determination of radiative heat transfer coefficient at high temperatures using a combined experimental-computational technique. Measurement Science Review, 15 (2), 85-91.10.1515/msr-2015-0013Search in Google Scholar

[6] Glowacz, A., Glowacz, A., Glowacz, Z. (2015). Recognition of thermal images of direct current motor with application of area perimeter vector and bayes classifier. Measurement Science Review, 15 (3), 119-126.10.1515/msr-2015-0018Search in Google Scholar

[7] Sloneker, K.C. (2009). Thermocouple inhomogeneity. Ceramic Industry, 159 (4), 13-18.Search in Google Scholar

[8] Kortvelyessy, L. (1981). Thermoelement Praxis. Essen, Germany: Vulkan-Verlag. (in German)Search in Google Scholar

[9] Glowacz, A., Glowacz, A., Korohoda, P. (2014). Recognition of monochrome thermal images of synchronous motor with the application of binarization and nearest mean classifier. Archives of Metallurgy and Materials, 59 (1), 31-34.10.2478/amm-2014-0005Search in Google Scholar

[10] Park, R.M. (ed.) (1993). Manual on the Use of Thermocouples in Temperature Measurement. ASTM International.Search in Google Scholar

[11] Abdelaziz, Y., Edler, F. (2009) A method for evaluation of the inhomogeneity of thermoelements. Measurement Science and Technology, 20 (5), 055102.10.1088/0957-0233/20/5/055102Search in Google Scholar

[12] Pearce, J.V. (2007). Quantitative determination of the uncertainty arising from the inhomogeneity of thermocouples. Measurement Science and Technology, 18, 3489-3495.10.1088/0957-0233/18/11/032Search in Google Scholar

[13] Tamba, J., Yamazawa, K., Masuyama, S., Ogura, H., Izuchi, M. (2011). Evaluating the inhomogeneity of thermocouples using a pressure-controlled water heat pipe. International Journal of Thermophysics, 32, 2436-2451.10.1007/s10765-011-1084-xSearch in Google Scholar

[14] Webster, E.S., White, D.R., Edgar, H. (2015). Measurement of inhomogeneities in MIMS thermocouples using a linear-gradient furnace and dual heat-pipe scanner. International Journal of Thermophysics, 36, 444-466.10.1007/s10765-014-1810-2Search in Google Scholar

[15] Su Jun, Kochan, O. (2014). The mechanism of the occurrence of acquired thermoelectric inhomogeneity of thermocouples and its effect on the result of temperature measurement. Measurement Techniques, 57 (10), 1160-1166.Search in Google Scholar

[16] Kortvelyessy, L. (1998). Thermoelement Praxis : Neue theoretische Grundlagen und deren Umsetzung, 3rd ed. Essen, Germany: Vulkan-Verlag. (in German)Search in Google Scholar

[17] Holmsten, M., Ivarsson, J., Falk, R., Lidbeck, M., Josefson, L.-E. (2008). Inhomogeneity measurements of long thermocouples using a short movable heating zone. International Journal of Thermophysics, 29 (3), 915-925.10.1007/s10765-008-0418-9Search in Google Scholar

[18] Isotermal Technology Ltd. (1999). Temperature calibration with isotech block baths.Search in Google Scholar

[19] Buschfort, H.G., Hundere, A. (1968). Self-calibrating temperature sensing probe and probe - indicator combination. U.S. Patent 3,499,340. Washington, D.C.: U.S. Patent and Trademark Office.Search in Google Scholar

[20] Sachenko, A., Kochan, V., Turchenko, V. (2000). Sensor drift prediction using neural networks. In Proceedings of International Workshop on Virtual and Intelligent Measurement Systems (VIMS'2000), 29-30 April, 2000, Annapolis, USA, 88-92.Search in Google Scholar

[21] Zvizdic, D., Sestan, D. (2015). Zinc-filled multientrance fixed point. International Journal of Thermophysics, 36, 336-346.10.1007/s10765-015-1846-ySearch in Google Scholar

[22] Su Jun, Kochan, O. (2014). Investigations of thermocouple drift irregularity impact on error of their inhomogeneity correction. Measurement Science Review, 14 (1), 29-34.10.2478/msr-2014-0005Search in Google Scholar

[23] White, W.P. (1906). The constancy of thermoelements. Physical Review, 23, 449-474.Search in Google Scholar

[24] Roeser, W., Wensel, H. (1935). Methods of testing thermocouples and thermocouple materials. Journal of Research of the National Bureau of Standards, 14, 247-282.10.6028/jres.014.010Search in Google Scholar

[25] Hill, K.D., Gee, D.J. (2012). Quantifying the calibration uncertainty attributable to thermocouple inhomogeneity. In Proceedings of the 9th International Temperature Symposium Temperature: Its Measurement and Control in Science and Industry, 19-23 March, 2012, Los Angeles, USA. AIP 1552, vol. 8, 520- 525.Search in Google Scholar

[26] Failleau. G., Elliott, C.J., Deuze, T., Pearce, J.V., Machin, G., Sadli, M. (2014). Miniature fixed-point cell approaches for in situ monitoring of thermocouple stability. International Journal of Thermophysics, 35, 1223-1238.10.1007/s10765-014-1667-4Search in Google Scholar

[27] Strnad, R., Jelinek, M., Failleau, G., et al. (2014). Drift a doba života termoelektrickych članků při vysokych teplotach. Automa, 6, 28-31. (in Czech)Search in Google Scholar

[28] Kochan, О., Kochan, R., Bojko, O., Chyrka, M. (2007). Temperature measurement system based on thermocouple with controlled temperature field. In Proceedings of the 4th IEEE International Workshop IDAACS’2007, 6-8 September, 2007, Dortmund, Germany. IEEE, 47-51.10.1109/IDAACS.2007.4488370Search in Google Scholar

[29] International Electrotechnical Commission. (1989). Thermocouples. Part 2: Tolerances. IEC 584-2.Search in Google Scholar

[30] Lienhard, J.H. V., Lienhard, J.H. IV. (2008). A Heat Transfer Textbook. Cambridge: Phlogiston Press.Search in Google Scholar

[31] Su Jun, Kochan, O., Kochan, R. (2015). Evaluation of error of method of thermocouple with controlled profile of temperature filed. In Proceedings of the 10th International Conference on Measurement (Measurement 2015), 25-28 May 2015, Smolenice, Slovakia. Bratislava, Slovakia: IMS SAS, 301-304. Search in Google Scholar

[32] Kuchling, H. (1980). Taschenbuch der Physik. Leipzig: VEB Fachbuchferlag. (in German)Search in Google Scholar

[33] Glowacz, A., Glowacz, A., Glowacz, Z. (2014). Recognition of monochrome thermal images of synchronous motor with the application of quadtree decomposition and backpropagation neural network. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 16 (1), 92-96.Search in Google Scholar

[34] Krolczyk, G.M., Legutko, S. (2014). Experimental analysis by measurement of surface roughness variations in turning process of duplex stainless steel. Metrology and Measurement Systems, 21 (4), 759-770.10.2478/mms-2014-0060Search in Google Scholar

[35] Hreha, P., Radvanska, A., Knapcikova, L., Krolczyk, G.M., Legutko, S., Krolczyk, J., Hloch, S., Monka, P. (2015). Roughness parameters calculation by means on-line vibration monitoring emerging from AWJ interaction with material. Metrology and Measurement Systems, 22 (2), 315-326.10.1515/mms-2015-0024Search in Google Scholar

[36] Hughes, I.G., Hase, T.P.A. (2010). Measurements and Their Uncertainties. A Practical Guide to Modern Error Analysis. Oxford University Press. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo