1. bookVolume 15 (2015): Issue 4 (August 2015)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Analysis of Spectral Features of EEG signal in Brain Tumor Condition

Published Online: 27 Aug 2015
Volume & Issue: Volume 15 (2015) - Issue 4 (August 2015)
Page range: 219 - 225
Received: 09 Jan 2015
Accepted: 12 Aug 2015
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

The scalp electroencephalography (EEG) signal is an important clinical tool for the diagnosis of several brain disorders. The objective of the presented work is to analyze the feasibility of the spectral features extracted from the scalp EEG signals in detecting brain tumors. A set of 16 candidate features from frequency domain is considered. The significance on the mean values of these features between 100 brain tumor patients and 102 normal subjects is statistically evaluated. Nine of the candidate features significantly discriminate the brain tumor case from the normal one. The results encourage the use of (quantitative) scalp EEG for the diagnosis of brain tumors

Keywords

[1] Dobrovoljac, M., Hengartner, H., Boltshauser, E., Grotzer, M.A. (2002). Delay in the diagnosis of paediatric brain tumours. European Journal of Pediatrics, 161 (12), 663-667.10.1007/s00431-002-1088-4Search in Google Scholar

[2] Edgeworth, J., Bullock, P., Bailey, A., Gallagher, A., Crouchman, M. (1996). Why are brain tumours still being missed? Archives of Disease in Childhood, 74, 148-151.10.1136/adc.74.2.148Search in Google Scholar

[3] Flores, L.E., Williams, D.L., Bell, B.A., O'Brien, M., Ragab, A.H. (1986). Delay in the diagnosis of pediatric brain tumors. American Journal of Diseases of Children, 140 (7), 684-686.10.1001/archpedi.1986.02140210082031Search in Google Scholar

[4] Reulecke, B.C., Erker, C.G., Fiedler, B.J., Niederstadt, T.U., Kurlemann, G. (2008). Brain tumors in children: Initial symptoms and their influence on the time span between symptom onset and diagnosis. Journal of Child Neurology, 23 (2), 178-183.10.1177/0883073807308692Search in Google Scholar

[5] Musella, A. (2010-2013). Brain Tumor Symptoms Survey Results. http://www.virtualtrials.com/ braintumorsymptomssurvey.cfm.Search in Google Scholar

[6] Husing, B., Jancke, L., Tag, B. (2006). Impact Assessment of Neuroimaging. Final Report. vdf Hochschulverlag AG an der ETH Zürich. http://www.vdf.ethz.ch/service/3065/3065_Neuroimag ing_OA.pdf.Search in Google Scholar

[7] Walter, G. (1936). The location of cerebral tumors by electroencephalography. Lancet, 228 (5893), 305-308.Search in Google Scholar

[8] Accolla, E.A., Kaplan, P.W., Maeder-Ingvar, M., Jukopila, S., Rossetti, A.O. (2011). Clinical correlates of frontal intermittent rhythmic delta activity (FIRDA). Clinical Neurophysiology, 122, 27-31.10.1016/j.clinph.2010.06.005Search in Google Scholar

[9] Bagchi, B.K., Kooh, K.A., Selving, B.T., Calhoun, H.D. (1961). Subtentorial tumors and other lesions: An electroencephalographic study of 121 cases. Electroencephalography and Clinical Neurophysiology, 13 (2), 180-192.10.1016/0013-4694(61)90134-1Search in Google Scholar

[10] Silverman, D., Sannit, T., Ainspac, S., Freedman, S. (1960). Serial electroencephalography in brain tumors and cerebrovascular accidents. Archives of Neurology, 2 (2), 122-129.10.1001/archneur.1960.0384008000800214446754Search in Google Scholar

[11] Fischer-Williams, M. (2004). Brain tumors and other space-occupying lesions. In Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, 305-321.Search in Google Scholar

[12] Kumar, S. (2005). Asymmetric depression of amplitude in EEG leading to a diagnosis of ipsilateral cerebral tumor. Annals of Indian Academy of Neurology, 8, 33-36.Search in Google Scholar

[13] O’Connor, S.C. Robinson, P.A. (2005). Analysis of the electroencephalographic activity associated with thalamic tumors. Journal of Theoretical Biology, 233, 271-286.10.1016/j.jtbi.2004.10.00915619366Search in Google Scholar

[14] Watemberg, N., Alehan, F., Dabby, R., Lerman-Sagie, T., Pavot, P., Towne, A. (2002). Clinical and radiologic correlates of frontal intermittent rhythmic delta activity. Journal of Clinical Neurophysiology, 19 (6), 535-539.10.1097/00004691-200212000-0000612488784Search in Google Scholar

[15] Chetty, S., Venayagamoorthy, G.K. (2002). A neural network based detection of brain tumours using electroencephalography. In Proceedings of IASTED International Conference Artificial Intelligence and Soft Computing, 17-19 July 2002, Banff, Canada, 391-396.Search in Google Scholar

[16] Habl, M., Bauer, Ch., Ziegaus, Ch., Lang, E.W., Schulmeyer, F. (200). Can ICA help identify brain tumor related EEG signals? In Proceedings of Second International Workshop on Independent Component Analysis and Blind Signal Separation, 19-22 June 2000, Helsinki, Finland, 609-614.Search in Google Scholar

[17] Karameh, F.N., Dahleh, M.A. (2000). Automated classification of EEG signals in brain tumor diagnostics. In Proceedings of the 2000 American Control Conference, 28-30 June 2000, Chicago, Illinois, 4169-4173.10.1109/ACC.2000.877006Search in Google Scholar

[18] Murugesan, M., Sukanesh, R. (2009). Automated detection of brain tumor in EEG signals using artificial neural networks. In Proceedings of 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies, 28-29 December 2009, Trivandrum, Kerala. IEEE, 284-288.10.1109/ACT.2009.77Search in Google Scholar

[19] Nagata, K., Gross, C.E., Kindt, G.W., Geier, M.J., Adey, G.R. (1985). Topographic electroencephalographic study with power ratio index mapping in patients with malignant brain tumors. Neurosurgery, 17 (4), 613-619.10.1227/00006123-198510000-000144058699Search in Google Scholar

[20] Silipo, R., Deco, G., Bartsch, H. (1999). Brain tumor classification based on EEG hidden dynamics. Intelligent Data Analysis, 3 (4), 287-306.10.3233/IDA-1999-3404Search in Google Scholar

[21] Ko, D.Y. (2009). EEG in Brain Tumors. http://emedicine.medscape.com/article/1137982- overview.Search in Google Scholar

[22] Picot, A., Charbonnier, S., Caplier. A. (2009). Monitoring drowsiness on-line using a single encephalographic channel. In Biomedical Engineering. In-Tech, 145-164. http://cdn.intechopen.com/pdfswm/8799.pdf.10.5772/7882Search in Google Scholar

[23] Nunez, P.L., Srinivasan, R. (2006). Electric Fields of the Brain: The Neurophysics of EEG, (2nd Ed.). Oxford University Press.Search in Google Scholar

[24] Lofhede, J. (2007). Classification of Burst and Suppression in the Neonatal EEG. Unpublished doctoral dissertation, Chalmers University of Technology, Goteborg, Sweden.Search in Google Scholar

[25] Salido-Ruiz, R., Ranta, R., Louis-Dorr, V. (2011). EEG montage analysis in the blind source separation framework. Biomedical Signal Processing and Control, 6 (1), 77-84.10.1016/j.bspc.2010.06.007Search in Google Scholar

[26] Hirsch, L., Brenner, R. (2009). Atlas of EEG in Critical Care, (1st Ed.). John Wiley & Sons.Search in Google Scholar

[27] Gudmundsson, S., Runarsson, T.P., Sigurdsson, S., Eiriksdottir, G., Johnsen, K. (2007). Reliability of quantitative EEG features. Clinical Neurophysiology, 118, 2162-2171.10.1016/j.clinph.2007.06.01817765604Search in Google Scholar

[28] Proakis, J.G., Manolakis, D.G. (2000). Digital Signal Processing Principles, Algorithms, and Applications, (3rd Ed.). Prentice-Hall of India.Search in Google Scholar

[29] Bao, F.S., Gao, J.M., Hu, J., Lie, D.Y.C., Zhang, Y., Oommen, K.J. (2009). Automated epilepsy diagnosis using interictal scalp EEG. In Proceedings of 31st Annual International Conference of the IEEE EMBS, 2-6 September 2009, Minneapolis, Minnesota. IEEE, 6603-6607.Search in Google Scholar

[30] Nikias, C.L., Raghuveer, M.R. (1987). Bispectrum estimation: A digital signal processing framework. Proceedings of the IEEE, 75 (7), 869-891.10.1109/PROC.1987.13824Search in Google Scholar

[31] Petropulu, A.P. (2000). Higher-order spectral analysis. In The Biomedical Engineering Handbook. CRC Press, 1-17.Search in Google Scholar

[32] Kim, Y.C., Powers, E.J. (1979). Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE Transactions on Plasma Science, 7 (2), 120-131.10.1109/TPS.1979.4317207Search in Google Scholar

[33] Elgar, S., Guza, R.T. (1988). Statistics of bicoherence. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36 (10), 1667-1668.10.1109/29.7555Search in Google Scholar

[34] Mahon, P., Greene, B.R., Greene, C., Boylan, G.B., Shorten, G.D. (2008). Behaviour of spectral entropy, spectral edge frequency 90%, and alpha and beta power parameters during low-dose propofol infusion. British Journal of Anaesthesia, 101 (2), 213-21.10.1093/bja/aen16118550642Search in Google Scholar

[35] Breakspear, M., Terry, J.R. (2002). Detection and description of non-linear interdependence in normal multichannel human EEG data. Clinical Neurophysiology, 113, 735-753.10.1016/S1388-2457(02)00051-2Search in Google Scholar

[36] Pereda, E., Cruz, D.M., Manas, S., Garrido, J.M., Lopez, S., Gonzalez, J.J. (2006). Topography of EEG complexity in human neonates: Effect of the postmenstrual age and the sleep state. Neuroscience Letters, 394, 152-157.10.1016/j.neulet.2005.10.03616278043Search in Google Scholar

[37] Blanco, S., Garcia, H., Quiroga, R.Q., Romanelli, L., Rosso, O.A. (1995). Stationaity of the EEG series. IEEE Engineering in Medicine and Biology, 14 (4), 395-399.10.1109/51.395321Search in Google Scholar

[38] Jeong, J., Gore, J.C., Peterson, B.S. (2002). A method for determinism in short time series, and its application to stationary EEG. IEEE Transactions on Biomedical Engineering, 49 (11), 1374-79.10.1109/TBME.2002.80458112450369Search in Google Scholar

[39] Spiegel, M.R., Schiller, J., Srinivasan, R.A. (2001). Probability and Statistics, (Schaum). New Delhi, India: McGraw Hill.Search in Google Scholar

[40] Montgomery, D.C., Runger, G.C. (2003). Applied Statistics and Probability for Engineers, (3rd Ed.). John Wiley & Sons.Search in Google Scholar

[41] DeGroot, M.H., Schervish, M.J. (2012). Probability and Statistics (4th Ed.). Addison-Wesley.Search in Google Scholar

[42] Gardner, M.J., Altman, D.G. (2005). Confidence intervals rather than P values. In Statistics with Confidence. Bristol: BMJ, 15-27.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo