1. bookVolume 15 (2015): Issue 4 (August 2015)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

Published Online: 27 Aug 2015
Volume & Issue: Volume 15 (2015) - Issue 4 (August 2015)
Page range: 176 - 183
Received: 06 Jan 2015
Accepted: 30 Jul 2015
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI) to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

Keywords

[1] Medina, M.T., Amador, C., Hernandez-Toranzo, R., Hesse, H., Holden, K.R., Morales-Ortı́z, A., Rodriguez-Salinas, L.C. (2008). Neurologic Consequences of Malnutrition. New York: Demos Medical Publishing.Search in Google Scholar

[2] Zeman, F.J., Heng, H., Hoogenboom, E.R., Kavlock, R.J., Mahboob, S. (1986). Cell number and size in selected organs of fetuses of rats malnourished and exposed to nitrofen. Teratogenesis, Carcinogenesis, and Mutagenesis, 6 (4), 339-347.10.1002/tcm.1770060409Search in Google Scholar

[3] Fukuda, M.T.H., Francolin-Silva, A.L., Sousa Almeida, S. (2002). Early postnatal protein malnutrition affects learning and memory in the distal but not in the proximal cue version of the Morris water maze. Behavioural Brain Research, 133 (2), 271-277.10.1016/S0166-4328(02)00010-4Search in Google Scholar

[4] Lister, J.P., Blatt, G.J., DeBassio, W.A., Kemper, T.L., Tonkiss, J., Galler, J.R., Rosene, D.L. (2005). Effect of prenatal protein malnutrition on numbers of neurons in the principal cell layers of the adult rat hippocampal formation. Hippocampus, 15 (3), 393-403.10.1002/hipo.20065Search in Google Scholar

[5] Hillman, D.E., Chen, S. (1981). Vulnerablity of cerebellar development in malnutrition-I. Quantation of layer volume and neuron numbers. Neuroscience, 6 (7), 1249-1262.Search in Google Scholar

[6] Benitez-Bribiesca, L., De la Rosa-Alvarez, I., Mansilla-Olivares, A. (1999). Dendritic spine pathology in infants with severe protein-calorie malnutrition. Pediatrics, 104 (2), e21.10.1542/peds.104.2.e21Search in Google Scholar

[7] Reddy, P.V., Das, A., Sastry, P.S. (1979). Quantitative and compositional changes in myelin of undernourished and protein malnourished rat brains. Brain Research, 161 (2), 227-235.10.1016/0006-8993(79)90065-9Search in Google Scholar

[8] Montanha-Rojas, E.A., Ferreira, A.A., Tenorio, F., Barradas, P.C. (2005). Myelin basic protein accumulation is impaired in a model of protein deficiency during development. Nutritional Neuroscience, 8 (1), 49-56.10.1080/10284150500049886Search in Google Scholar

[9] Mazer, C., Muneyyirci, J., Taheny, K., Raio, N., Borella, A., Whitaker-Azmtia, P. (1997). Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat: A possible model of neurodevelopmental disorders with cognitive deficits. Brain Researc, 760 (1-2), 68-73.10.1016/S0006-8993(97)00297-7Search in Google Scholar

[10] Chen, J.C., Turiak, G., Galler, J., Volicer, L. (1997). Postnatal changes of brain monoamine levels in prenatally malnourished and control rats. International Journal of Developmental Neuroscience, 15 (2), 257-263.10.1016/S0736-5748(96)00121-9Search in Google Scholar

[11] Chang, Y.M., Galler, J.R., Luebke, J.I. (2003). Prenatal protein malnutrition results in increased frequency of miniature inhibitory postsynaptic currents in rat CA3 interneurons. Nutritional Neuroscience, 6 (4), 263-267.10.1080/102841503100015154912887143Search in Google Scholar

[12] Nakagawasai, O. (2005). Behavioral and neurochemical alterations following thiamine deficiency in rodents: Relationship to functions and cholinergic neurons. Yakugaku Zasshi, 125 (7), 549 -554.10.1248/yakushi.125.54915997211Search in Google Scholar

[13] Cermak, J.M., Holler, T., Jackson, D.A., Blusztajn, J.K. (1998). Prenatal availability of choline modifies development of the hippocampal cholinergic system. FASEB Journal, 12 (3), 349-357.10.1096/fasebj.12.3.349Search in Google Scholar

[14] Zimmer, L., Delpal, S., Guilloteau, D., Aioun, J., Durand, G., Chalon, S. (2000). Chronic n-3 polyunsaturated fatty acid deficiency alters dopamine vesicle density in the rat frontal cortex. Neuroscience Letters, 284 (1-2), 25-28.10.1016/S0304-3940(00)00950-2Search in Google Scholar

[15] Chalon, S., Vancassel, S., Zimmer, L., Guilloteau, D., Durand, G. (2001). Polyunsaturated fatty acids and cerebral function: Focus on monoaminergic neurotransmission. Lipids, 36 (9), 937-944.10.1007/s11745-001-0804-711724466Search in Google Scholar

[16] Ortiz, R., Cortes, E., Perez, L., Gonzalez, C., Betancourt, M. (1996). Assessment of an experimental method to induce malnutrition by food competition during lactation. Medical Science Research, 24, 843-846.Search in Google Scholar

[17] Just, N. Petersen, C., Gruetter, R. (2010). BOLD responses to trigeminal nerve stimulation. Magnetic Resonance Imaging, 28 (8), 1143-1151.10.1016/j.mri.2010.02.00220399585Search in Google Scholar

[18] Wegener, S., Wong, E.C. (2008). Longitudinal MRI studies in the isoflurane-anesthetized rat: Long-term effects of a short hypoxic episode on regulation of cerebral blood flow as assessed by pulsed arterial spin labelling. NMR in Biomedicine, 21 (7), 696-703.10.1002/nbm.124318275045Search in Google Scholar

[19] Sicard, K., Shen, Q., Brevard, M.E., Sullivan, R., Ferris, C.F., King, J.A., Duong, T.Q. (2003). Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: Implications for functional MRI studies. Journal of Cerebral Blood & Flow Metabolism, 23 (4), 472-481.10.1097/01.WCB.0000054755.93668.20298960812679724Search in Google Scholar

[20] Kim, T., Masamoto, K., Fukuda, M., Vazquez, A., Kim, S.G. (2010). Frequency-dependent neural activity, CBF, and BOLD fMRI to somatosensory stimuli in isoflurane-anesthetized rats. Neuroimage, 52 (1), 224-233.10.1016/j.neuroimage.2010.03.064288366420350603Search in Google Scholar

[21] Vanhoutte, G., Verhoye, M., Van der Linden, A. (2006). Changing body temperature affects the T2* signal in the rat brain and reveals hypothalamic activity. Magnetic Resonance in Medicine, 55 (5), 1006-1012.10.1002/mrm.2086116598718Search in Google Scholar

[22] Hyder, F., Behar, K.L., Martin, M.A., Blamire, A.M., Shulman, R.G. (1994). Dynamic magnetic resonance imaging of the rat brain during forepaw stimulation. Journal of Cerebral Blood & Flow Metabolism, 14 (4), 649-655.10.1038/jcbfm.1994.818014212Search in Google Scholar

[23] Yang, X., Hyder, F., Shulman, R.G. (1996). Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging. Proceedings of the National Academy of Sciences USA, 93 (1), 475-478.10.1073/pnas.93.1.475402618552664Search in Google Scholar

[24] Sawiak, S.J., Wood, N.I., Williams, G.B., Morton, A.J., Carpenter, T.A. (2009). SPMMouse: A new toolbox for SPM in the animal brain. In ISMRM 17th Scientific Meeting & Exhibition, Honolulu, US, 18-24 April 2009. ISMRM, 6264.Search in Google Scholar

[25] Paxinos, G., Watson, Ch. (1998). The Rat Brain in Stereotaxic Coordinates, 4th ed. Academic Press.Search in Google Scholar

[26] Kandel, E.R. (2000). Principles of Neural Science. McGraw-Hill.Search in Google Scholar

[27] Segura, B., Guadarrama, J.C., Pratz, G., Mercado, V., Merchant, H., Cintra, L., Jimenez, I. (2004). Conduction failure of action potentials in sensory sural nerves of undernourished rats. Neuroscience Letters, 354 (3), 181-184.10.1016/j.neulet.2003.10.01514700726Search in Google Scholar

[28] Silva, A.C., Koretsky, A.P. (2002). Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proceedings of the National Academy of Sciences USA, 99 (23), 15182-15187.10.1073/pnas.22256189913756412407177Search in Google Scholar

[29] Vandervliet, E., Nagels, G., Heinecke, A., Van Hecke, W., Leemans, A., Sijbers, J., Parizel, P.M. (2006). On the cause and mechanisms of the negative BOLD response in fMRI. In ESMRMB 2006: 23rd Annual Scientific Meeting, Warsaw, Poland, 21-23 September 2006. ESMRMB, 624.Search in Google Scholar

[30] Lindquist, M.A., Meng Loh, J.M., Atlas, L.Y., Wager, T.D. (2009). Modeling the hemodynamic response function in fMRI: Efficiency, bias and mis-modeling. Neuroimage, 45 (1 Suppl), S187-S198.10.1016/j.neuroimage.2008.10.065331897019084070Search in Google Scholar

[31] Zumer, J.M., Brookes, M.J., Stevenson, C.M., Francis, S.T., Morris, P.G. (2010). Relating BOLD fMRI and neural oscillations through convolution and optimal linear weighting. Neuroimage, 49 (2), 1479-1489.10.1016/j.neuroimage.2009.09.02019778617Search in Google Scholar

[32] Henson, R., Friston, K. (2007). Convolution models for fMRI. In Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 178-192.10.1016/B978-012372560-8/50014-0Search in Google Scholar

[33] Yeşilyurt B., Uğurbil K., Uludağ K. (2008). Dynamics and nonlinearities of the BOLD response at very short stimulus durations. Magnetic Resonance Imaging, 26 (7), 853-862.10.1016/j.mri.2008.01.00818479876Search in Google Scholar

[34] Gunston, G.D., Burkimsher, D., Malan, H., Sive, A.A. (1992). Reversible cerebral shrinkage in kwashiorkor: An MRI study. Archives of Disease in Childhood, 67 (8), 1030-1032.10.1136/adc.67.8.103017935951520007Search in Google Scholar

[35] Birn, R.M., Saad, Z.S., Bandettini, P.A. (2001). Spatial heterogeneity of the nonlinear dynamics in the FMRI BOLD response. Neuroimage, 14 (4), 817-826.10.1006/nimg.2001.087311554800Search in Google Scholar

[36] Sizonenko, S.V., Babiloni, C., de Bruin, E.A., Isaacs, E.B., Jonsson, L.S., Kennedy, D.O., Latulippe, M.E., Hohajen, M.H., Moreines, J., Pietrini, P., Walhovd, K.B., Winwood, R.J., Sijben, J.W. (2013). Brain imaging and human nutrition: Which measures to use in intervention studies? British Journal of Nutrition, 110 (1), S1-S30.10.1017/S000711451300138423902645Search in Google Scholar

[37] Van Camp, N., Verhoye, M., Van der Linden, A. (2006). Stimulation of the rat somatosensory cortex at different frequencies and pulse widths. NMR in Biomedicine, 19 (1), 10-17.10.1002/nbm.98616408324Search in Google Scholar

[38] Bullmore, E., Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10 (3), 186-198.10.1038/nrn257519190637Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo