1. bookVolume 25 (2017): Issue 1 (March 2017)
Journal Details
First Published
30 Mar 2017
Publication timeframe
4 times per year
access type Open Access

Biosurfactants’ Production from Renewable Natural Resources: Example of Innovativeand Smart Technology in Circular Bioeconomy

Published Online: 23 Jan 2017
Page range: 46 - 54
Received: 01 Jul 2016
Accepted: 01 Nov 2016
Journal Details
First Published
30 Mar 2017
Publication timeframe
4 times per year

A strong developed bio-based industrial sector will significantly reduce dependency on fossil resources, help the countries meet climate change targets, and lead to greener and more environmental friendly growth. The key is to develop new technologies to sustainably transform renewable natural resources into bio-based products and biofuels. Biomass is a valuable resource and many parameters need to be taken in to account when assessing its use and the products made from its. The bioeconomy encompass the production of renewable biological resources and their conversion into food, feed and bio-based products (chemicals, materials and fuels) via innovative and efficient technologies provided by industrial biotechnology. The paper presents the smart and efficient way to use the agro-industrial, dairy and food processing wastes for biosurfactant’s production. Clarification processes are mandatory to use the raw substrates for microbial growth as well as biosurfactant production for commercial purposes. At the same time it is very essential to retain the nutritional values of those cheap substrates. Broad industrial perspectives can be achieved when quality as well as the quantity of the biosurfactant is considered in great depth. Since substrates resulting from food processing, dairy, animal fat industries are not explored in great details; and hence are potential areas which can be explored thoroughly.


[1] “Innovating for Sustainable Growth: A Bioeconomy for Europe”, COM, Brussels, 2012.Search in Google Scholar

[2] A.R.C. Morais and R. Bogel-Lukasik. „Green chemistry and the biorefinery concept”, in Sustainable Chemical Processes, vol. 1(18), 2013, pp. 56-69.Search in Google Scholar

[3] F. Fava, G. Totaro, L. Diels et al. „Bio waste biorefinery in Europe: opportunities and research and development needs”, in New Biotechnology, vol. 32(1), 2015, pp. 100-108.Search in Google Scholar

[4] Joint European Biorefinery Vision for 2030. Star – COLIBRI – Strategic targets for 2020 – collaboration initiative on biorefineries, 2011.Search in Google Scholar

[5] F. Cherubini. „The biorefinery concept: using biomass instead of oil for producing energy and chemicals”, in Energy Convers Management, vol. 51(7), 2010, pp. 1412-1421.Search in Google Scholar

[6] E. de Jong, R. van Ree, I.K. Kwant et al. „Biorefineries: Adding Value to the Sustainable Utilisation of Biomass”, in IEA Bioenergy, vol. 1, 2009, pp. 1-16.Search in Google Scholar

[7] T. Gabrielczyk. „Can Europe stop the stream of wastes?”, in European Biotechnology, vol. 15, 2016, pp. 50-55.Search in Google Scholar

[8] L.A. Pfaltzgraff and J.K. Clark. „Green chemistry, biorefineries and second generation strategies for re-use of waste: an overview”, in Advances in Biorefineries, K. Waldron, Cambridge: Woodhead Publishing Limited, 2014, pp. 3-33.Search in Google Scholar

[9] I.M. Banat, S.K. Satpute, S.S. Cameotra, R. Patil and N.V. Nyayanit. „Cost effective technologies and renewable substrates for biosurfactants’ production”, in Frontiers in Microbiology, vol. 5, 2014, pp. 697-708.Search in Google Scholar

[10] R.S. Makkar and S.S. Cameotra. „An update on the use of uncoventional substrates for biosurfactant production and their new applications”, in Applied Microbiology and Biotechnology, vol. 58(4), 2002, pp. 428-434.Search in Google Scholar

[11] C.N. Mulligan, S.K. Sharma and A. Mudhoo. Biosurfactants. Research Trends and Applications, Boca Raton: CRC Press, Taylor&Francis Group, 2014.Search in Google Scholar

[12] A.A. Bodour and R.M. Maier. „Biosurfactants: types, screening methods and applications”, in Encyclopedia of Environmental Microbiology, vol. 2, New York: John Wiley & Sons Inc., 2001, pp. 750-770.Search in Google Scholar

[13] G. Soberon-Chavez. Biosurfactants: From genes to applications, Berlin-Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.Search in Google Scholar

[14] J.M. Campos, T.L.M. Stamford, L.A. Sarubbo et al. „Microbial biosurfactants as additives for food industries”, in Biotechnology Progress, vol. 29(5), 2013, pp. 1097-1108.Search in Google Scholar

[15] G.S. Hartley. Aqueous solutions of paraffin chain salts. A study in micelle formation, Paris: Hermann et Cie, 1936.Search in Google Scholar

[16] L.S. Romsted. „Micellar Catalysis of Diels-Alder Reactions: Substrate Positioning in the Micelle, in Micellization solubilsation and micro emulsions, vol. 2, K.L. Mittal, New York: Plenum Press, 1977, pp. 95-119.Search in Google Scholar

[17] M.J. Rosen. Surfactant and interfacial phenomena, 3rd ed., New York: Wiley, 2004.Search in Google Scholar

[18] P. Mukerjee and K.J. Mysels. „Critical micelle concentrations of aqueous surfactant systems nonionic detergents”, no NSRDS-NBS 36, National Standard Reference Data System, 1971.Search in Google Scholar

[19] R. Mandavi. „Kinetic studies of some esters and amides in presence of micelles”, chapter 2, Ph.D. dissertation, Pt. Ravishankar Shukla University Raipur (CG), India Department of Chemistry, 2011.Search in Google Scholar

[20] M.R. Porter. Handbook of Surfactants, 2nd ed., London: Chapman & Hall, 1994.Search in Google Scholar

[21] A.L. Hunter. Foundations of colloid science, vol. 1-2, Oxford: Clarendon, 1987.Search in Google Scholar

[22] A. Ray and G. Nemethy. „Effects of ionic protein denaturants on micelle formation by nonionic detergents”, in Journal of American Chemical Society, vol. 93(25), 1971, pp. 6787-6793.Search in Google Scholar

[23] M.M. Rieger. „The Skin irritation potential of quaternaries”, in Journal of the Society of Cosmetic Chemists, vol. 48, 1997, pp. 307-317.Search in Google Scholar

[24] M.E. Mahmood and D.A.F. Al-Koofee. „Effect of temperature changes on critical micelle concentration for Tween series surfactant”, in Global Journal of Science Frontier Research. Chemistry, vol. 13(4), 2013, pp. 1-5.Search in Google Scholar

[25] L.H. Guerra-Santos, O. Kappeli and A. Fiechter. „Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors”, in Applied Microbiology and Biotechnology, vol. 24(6), 1986, pp. 443-448.Search in Google Scholar

[26] A. Fiechter. „Biosurfactants: moving towards industrial application”, in Trends Biotechnology, vol. 10, 1992, pp. 208-217.Search in Google Scholar

[27] C. Syldatk and F. Wagner. „Production of biosurfactants”, in Biosurfactants and Biotechnology, N. Kosaric, W.L. Cairns and N.C.C. Gray, New York: Marcel Dekker Inc., 1987, pp. 89-120.Search in Google Scholar

[28] S.K. Satpute, S.S.Bhuyan, K.R. Pardesi et al. „Chapter 2: Molecular Genetics of Biosurfactant Synthesis in Microorganisms”, in Biosurfactants, R. Sen, New York: Springer-Verlag New York, 2010.Search in Google Scholar

[29] Y. Prabhu and P.S. Phale. „Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation”, in Applied Microbiology and Biotechnology, vol. 61(4), 2003, pp. 342-351.Search in Google Scholar

[30] C.D. Cunha, M. Rosario, A.S. Rosado and G.F. Leite. „Serratia sp. SVGG16: A promising biosurfactant producer isolated from tropical soild during growth with ethanol blended gasoline”, in Process Biochemistry, vol. 39, 2004, pp. 2277-2282.Search in Google Scholar

[31] Z.A. Raza, M.S. Khana, Z.M. Khalidb and A. Rehman. „Production of biosurfactant using different hydrocarbons by Pseudomonas aeruginosa, in Journal of Biosciences: vol.61(1-2), 2006, pp. 87-94.Search in Google Scholar

[32] Z.A. Raza, M.S. Khan and Z.M. Khalid. „Physicochemical and surface active properties of bio-surfactant produced using molasses by a Pseudomonas aeruginosa mutant”, in Journal of Environmental Science and Health. Toxic Hazardous Substances and Environmental Engineering, vol. 42(1), 2007, pp. 73-80.Search in Google Scholar

[33] F.F.C. Barros, C.P. Quadros, M.R. Maróstica and G.M. Pastore. „Surfactina: Propriedades químicas, technológicas e funciona is para aplicações em alimentos”, in Química Nova, vol. 30(2), 2007, pp. 1-14.Search in Google Scholar

[34] S.G. Kapadia and B.N. Yagnik. „Current trend and potential for microbial biosurfactants”, in Experimental Biological Science, vol. 4, 2013. pp. 234-251.Search in Google Scholar

[35] R.M. Patel and A.J. Desai. „Biosurfactant production by Pseudomonas aeruginosa GS3 from molasses”, in Letter Applied Microbiology, vol. 25, 1997, pp. 91-94.Search in Google Scholar

[36] K. Dubey and A. Juwarkar. „Distillery and curd whey wastes as viable alternative sources for biosurfactant production”, in World Journal of Microbiology and Biotechnology, vol. 17, 2001, pp. 61-69.Search in Google Scholar

[37] M. Benincasa, J. Contiero, M.A. Manresa and I.O. Moraes. „Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soap stocks the sole carbon source”, in Journal of Food Engineering, vol. 54(4), 2002, pp. 283-288.Search in Google Scholar

[38] Z.A. Raza, A. Rehman, M.S. Khan and Z.M. Khalid. „Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes”, in Biodegradation, vol. 18, 2007, pp. 115-121.Search in Google Scholar

[39] A.B. Moldes, A.M. Torrado, M.T. Barral and J.M. Domínguez. „Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus”, in Journal of Agriculture and Food Chemistry, vol. 55(11), 2007, pp. 4481-4486.Search in Google Scholar

[40] M. Deshpande and L. Daniels. „Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat”, in Bioresource Technology, vol. 54, 1995, pp. 143-150.Search in Google Scholar

[41] H.J. Daniel, M. Reuss and C. Syldatk. „Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC22214 and Cryptococcus curvatusATCC20509”, in Biotechnology Letter, vol. 20, 1998, pp. 1153-1156.Search in Google Scholar

[42] H.J. Daniel, R.T. Otto, M. Binder, M. Reus and C. Syldatk. „Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC20509 and Candida bombicola ATCC22214 using deproteinized whey concentrates as substrates”, in Applied Microbiology and Biotechnology, vol. 51(1), 1999, pp. 40-45.Search in Google Scholar

[43] A. Daverey, K. Pakshirajan and P. Sangeetha. „Sophorolipids production by Candida bombicola using synthetic dairy waste water”, in World Academy of Science, Engineering and Technology, vol. 3, 2009, pp. 470-472.Search in Google Scholar

[44] M. Govindammal and R. Parthasarathi. „Biosurfactant production using pineapple juices medium by Pseudomonas fluorescens isolated from mangrove forest soil”, in Indian Streams Research Journal, vol. 2(12), 2013, pp. 1-10.Search in Google Scholar

[45] D.G. Cooper and D.A. Paddock. „Production of a bio-surfactant from Torulopsis bombicola”, in Applied Environment, vol. 47(1), 1984, pp. 173-176.Search in Google Scholar

[46] C.S. Chooklin, S. Phertmean, B. Cheirsilp, S. Maneerat and A. Saimmai. „Utilization of palm oil mill effluent as a novel and promising substrate for biosurfactant production by Nevskia ramosa NA3”, in Songklanakarin Journal of Science and Technology, vol. 35(2), 2013, pp. 167-176.Search in Google Scholar

[47] R. Thavasi, V.R.M. Subramanyam Nambaru, S. Jayalakshmi, T. Balasubramanian and I. M. Banat. „Biosurfactant production by Azotobacter chroococcum isolated from the marine environment”, in Marine Biotechnology, vol. 11, 2009, pp. 551-556.Search in Google Scholar

[48] S.K. Satpute, B.D. Bhawsar, P.K. Dhakephalkar and B.A. Chopade. „Assessment of different screening methods for selecting biosurfactant producing marine bacteria”, in Indian Journal of Marine Sciences, vol. 37(3), 2008, pp. 243-250.Search in Google Scholar

[49] S. Bergström, H. Theorell and H. Davide. „On a metabolic product of Ps. pyocyanea. Pyolipic acid, active against M. tuberculosis”, in Archives of Chemistry, Mineralogy and Geology., vol. 23A (13), 1946, pp. 1-12.Search in Google Scholar

[50] S. Bergström, H. Theorell and H. Davide. „Pyolipic acid. A metabolic product of Pseudomonas pyocyanea active against Mycobacterium tuberculosis”, in Archives of Biochemistry and Biophysics, vol. 10, 1946, pp. 165-166.Search in Google Scholar

[51] F.G. Jarvis and M.J. Johnson. „A glycolipid produced by Pseudomonas aeruginosa”, in Journal of American Chemical Society, vol. 71(12), 1949, pp. 4124-4126.Search in Google Scholar

[52] K. Hisatsuka, T. Nakahara, N. Sano and K. Yamada. „Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation”, in Agricultural Biology Chemistry, vol. 35(5), 1971, pp. 686-692.Search in Google Scholar

[53] M.G. Rikalović, M. Vrvić and M.I. Karadžić. „Rhamnolipid biosurfactant from Pseudomonas aeruginosa – from discovery to application in contemporary technology”, in Journal of the Serbian Chemical Society, vol. 80(3), 2015, pp. 279-304.Search in Google Scholar

[54] E. Haba, M.J. Espuny, M. Busquets and A. Manresa. „Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB40044 from waste frying oils”, in Journal of Applied Microbiology, vol. 88(3), 2000, pp. 379-387.Search in Google Scholar

[55] M. Rashedi, M. Assadi, E. Jamshidi and B. Bonakdarpour. „Production of rhamnolipids by Pseudomonas aeruginosa growing on carbon sources”, in International Journal of Enviornmental Science and Technology, vol. 3(3), 2006, pp. 297-303.Search in Google Scholar

[56] E.J. Gudiña, A.I. Rodrigues, E. Alves et al. „Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation”, in Bioresource Technology, vol. 177, 2015, pp. 87-93.Search in Google Scholar

[57] S.A. Monteiro, G.L. Sassaki, L.M. de Souza et al. „Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614”, in Chemistry and Physics of Lipids, vol. 147(1), 2007, pp. 1-13.Search in Google Scholar

[58] M.E. Mercade, A. Manresa, M. Robert et al. „Olive oil mill effluent (OOME) new substrate for biosurfactant production”, in Bioresource Technology, vol. 43, 1993, pp. 1-6.Search in Google Scholar

[59] Z.A. Raza, A. Rehman, M.S. Khan and Z.M. Khalid. „Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes”, in Biodegradation, vol. 18(1), 2007, pp. 115-121.Search in Google Scholar

[60] S. George and K. Jayachandran. „Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D”, in Journal of Applied Microbiology, vol. 114(2). 2013, pp. 343-383.Search in Google Scholar

[61] R.S. Makkar and S.S. Cameotra. „Utilization of molasses for biosurfactant production by two Bacillus trains at thermophilic conditions”, in Journal of the American Oil Chemists’ Society, vol. 74(7), 1997, pp. 887-889.Search in Google Scholar

[62] S. Joshi, C. Bharucha, S. Jha et al. „Biosurfactant production using molasses and whey under thermophilic conditions”, in Bioresource Technology, vol. 99(1), 2008, pp. 195-199.Search in Google Scholar

[63] S.L. Fox and G.A. Bala. „Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates”, in Bioresource Technology, vol. 75(3), 2000, pp. 235-240.Search in Google Scholar

[64] D.N. Thompson, S.L. Fox and G.A. Bala. “Biosurfactants from potato process effluents”, in Applied Biochemistry and Biotechnology, vol. 84(1), 2000, pp. 917-930.Search in Google Scholar

[65] H.J. Daniel, R.T. Otto, M. Reuss and C. Syldatk. “Sophorolipid production with high yields on whey concentrate and rapeseed oil with consumption of lactose”, in Biotechnology Letter, vol. 20, 1998, pp. 805-807.Search in Google Scholar

[66] H.S. Kim, Y.B. Kim, B.S. Lee and E.K. Kim. “Sophorolipid production by Candida bombicola ATCC 22214 from a corn oil processing by product”, in Journal of Microbiology and Biotechnology, vol. 15(1), 2005, pp. 55-58.Search in Google Scholar

[67] A. E. Elshafie, S.J. Joshi, Y.M. Al-Wahaibi et al. „Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery”, in Frontier Microbiology, vol. 6, 2015, pp. 1324-1337.Search in Google Scholar

[68] A. Daverey and K. Pakshirajan. “Pretreatment of synthetic dairy waste water using the sophorolipid producing yeast Candida bombicola”, in Applied Biochemistry and Biotechnology, vol. 163(6), 2011, pp. 720-728.Search in Google Scholar

[69] M. Nitschke M, Pastore, G. M. Biossurfactantes: Propriedades e aplicações. Quim Nova 25, 2002, pp. 772-776.Search in Google Scholar

[70] C. D. Coimbra, R. D. Rufino J. M. Luna, L. A. Sarubbo. “Studies of the cell surface properties of Candida species and relation to the production of biosurfactants for environmental applications”, Current Microbiology 58,2009, pp. 245-251.Search in Google Scholar

[71] P. B. Singh and H. Singh Saini Biotransformation of Waste Biomass into High Value Biochemicals, Chapter: 18. Exploitation of agro-industrial wastes to produce low cost microbial surfactants, Publisher: Springer New York, Editors: Satinder Kaur Brar, Gurpreet Singh Dhillon, Carlos Ricardo Soccol, pp.445-471.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo