1. bookVolume 36 (2018): Issue 2 (June 2018)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Electron Work Functions of (H K L)-Surfaces of W, Re, and Cu Crystals

Published Online: 25 Jun 2018
Volume & Issue: Volume 36 (2018) - Issue 2 (June 2018)
Page range: 225 - 234
Received: 15 Nov 2017
Accepted: 15 Feb 2018
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Work function (WF) and some physicochemical data for several most prominent crystal planes of three metals of typical structures are calculated within the linear approximation employing the surface dipole and 2D gas models. “Composite” crystal of a homogeneous bulk phase and a thick surface composed of eight (h k l)-oriented facets with different unsaturated bonds is treated as a nine-phase nine-component system with two degrees of freedom. It contains the two-dimensional metal-lattice plasma of free electrons and the immobile atom-core network. For twenty four (h k l) surfaces, the WF and dipole barrier term, chemical and electrostatic potential levels, electron charge densities, surface dipole fields, and other parameters are calculated and tabularized. WF values obtained from the thermodynamics based formula are compared to the ones obtained from the quantum mechanics based formula, which shows good agreement with experiment and also reveals a specific deviation in the case of field emission method for the most packed plane. A set of accurate face dependent data can be of interest to electronics and materials science workers

Keywords

[1] Herring C., Nichols M.H., Rev. Mod. Phys., 21 (1949), 185.10.1103/RevModPhys.21.185Open DOISearch in Google Scholar

[2] Kiejna A., Wojciechowski K.F., Metal Surface Electron Physics, Pergamon, Oxford, 1996.10.1016/B978-008042675-4/50000-1Search in Google Scholar

[3] Halas S., Mater. Sci.-Poland, 24 (2006), 951.10.1038/nbt0806-95116900139Search in Google Scholar

[4] Bardeen J., Phys. Rev., 49 (1936), 653.10.1103/PhysRev.49.653Search in Google Scholar

[5] Smoluchowski R., Phys. Rev., 60 (1941), 661.10.1103/PhysRev.60.661Open DOISearch in Google Scholar

[6] Lang N.D., Kohn W., Phys. Rev. B, 1 (1970), 4555.10.1103/PhysRevB.1.4555Search in Google Scholar

[7] Lang N.D., Kohn W., Phys. Rev. B, 3 (1971), 1215.10.1103/PhysRevB.3.1215Search in Google Scholar

[8] Boudreaux D.S., Phys. Rev. B, 1 (1970), 4552.10.1103/PhysRevB.1.4551Search in Google Scholar

[9] Hohenberg P., Kohn W., Phys. Rev., 136, B864 (1964).10.1103/PhysRev.136.B864Search in Google Scholar

[10] Methfessel M., Hennig D., Scheffler M., Phys. Rev. B, 46 (1992), 4816.10.1103/PhysRevB.46.4816Search in Google Scholar

[11] Knapp A.G., Surface Sci., 34 (1973), 289.10.1016/0039-6028(73)90120-9Search in Google Scholar

[12] Wojciechowski K.F., Kiejna A., Bogdanów H., Modern Phys. Lett. B, 13 (1999), 1081.10.1142/S0217984999001330Search in Google Scholar

[13] Kiejna A., Phys. Rev. B, 47 (1993), 7361.10.1103/PhysRevB.47.7361Open DOISearch in Google Scholar

[14] Halas S., Durakiewicz T., J. Phys.-Condens. Mater., 10 (1998), 10815.10.1088/0953-8984/10/48/005Search in Google Scholar

[15] Durakiewicz T., Halas S., Arko A., Joyce J.J., Moore D.P., Phys. Rev. B, 64 (2001), 045101. [16] Brodie I., Chow S.H., Yuan H., Surface Sci., 625 (2014), 112.Search in Google Scholar

[17] Brodie I., Phys. Rev. B, 51 (1995), 13660.10.1103/PhysRevB.51.13660Open DOISearch in Google Scholar

[18] Baribeau J-M., Lopez J., Le Bosse J.-C., J. Phys. C-Solid State Phys., 18 (1985), 3083.10.1088/0022-3719/18/15/017Open DOISearch in Google Scholar

[19] Surma S.A., Phys. Status Solidi A, 183 (2001), 307.10.1002/1521-396X(200102)183:2<307::AID-PSSA307>3.0.CO;2-ZSearch in Google Scholar

[20] Surma S.A., Brona J., Ciszewski A., Mater. Sci.- Poland, 33 (2015), 430.10.1515/msp-2015-0035Search in Google Scholar

[21] Mackenzie J.K., Moore A.J.W., Nicholas J.F., J. Phys. Chem. Solids, 23 (1962), 185.10.1016/0022-3697(62)90001-XOpen DOISearch in Google Scholar

[22] Artsimovich L.A., Elementarnaya Fizika Plazmy, Atomizdat, Moscow, 1969.Search in Google Scholar

[23] Knor Z., Müller E.W., Surface Sci., 10 (1968), 21.10.1016/0039-6028(68)90080-0Search in Google Scholar

[24] Guggenheim E.A., Thermodynamics, North-Holland Elsevier, Amsterdam, 1993.Search in Google Scholar

[25] Landau L.D., Lifshits E.M., Statistical Physics, Pergamon, London, 1980.Search in Google Scholar

[26] Koryta J., Dvorak J., Bohackova V., Lehrbuch Der Elektrochemie, Springer, Wien/Newyork, 1975.10.1007/978-3-7091-8418-9Search in Google Scholar

[27] Wigner E.P., Bardeen J., Phys. Rev., 48 (1935), 84.10.1103/PhysRev.48.84Search in Google Scholar

[28] Schulte F.K., J. Phys. C-Solid State Phys. 7 (1974), L370.10.1088/0022-3719/7/20/003Open DOISearch in Google Scholar

[29] Tavares F W., Prausnitz J.M., Colloid. Polym. Sci., 282 (2004), 620.10.1007/s00396-003-0987-xSearch in Google Scholar

[30] Rado´N T., Acta Phys. Polon. A, 118, (2010), 596.10.12693/APhysPolA.118.596Open DOISearch in Google Scholar

[31] Chen Y., Zhao C., Huang F., Zhan R., Deng S., Xu N., Chen J., Sci. Rep., 6 (2016), 21270.10.1038/srep21270475669626882827Open DOISearch in Google Scholar

[32] Wojciechowski K.F., Phys. Rev. B, 60 (1999), 9202.10.1103/PhysRevB.60.9202Open DOISearch in Google Scholar

[33] Herman M.H., Tsong T.T., Phys. Rev. Lett., 48 (1982), 1029.10.1103/PhysRevLett.48.1029Open DOISearch in Google Scholar

[34] Tomaszewski P.E., Ferroelectrics, 375 (2008), 74.10.1080/00150190802437910Search in Google Scholar

[35] Plummer E.W., Rhodin T.N., J. Chem. Phys., 49 (1968), 3479.10.1063/1.1670622Search in Google Scholar

[36] Smith J.R., Phys. Rev. Lett., 25 (1970), 1023.10.1103/PhysRevLett.25.1023Open DOISearch in Google Scholar

[37] Young R.D., Clark H.E., Phys. Rev. Lett., 17 (1966), 351.10.1103/PhysRevLett.17.351Search in Google Scholar

[38] Skriver H.L., Rosengaard N.M., Phys. Rev. B, 46 (1992), 7157.10.1103/PhysRevB.46.7157Open DOISearch in Google Scholar

[39] Drechsler M., The Equilibrium Shape Of Metal Crystals, In: Vu T.B. (Ed.), Surface Mobilities On Solid Materials, Plenum Press, New York/London, 1983, Pp. 405 - 457.10.1007/978-1-4684-4343-1_17Search in Google Scholar

[40] Kern R., The Equilibrium Form Of A Crystal, In: Sunagawa I. (Ed.), Morphology Of Crystals, Terrapub, Tokyo, 1987, Pp. 77 - 206.Search in Google Scholar

[41] Mueller E.W., Tsong T.T., Field Ion Microscopy - Principles And Applications, American Elsevier, New York, 1969, P. 70.Search in Google Scholar

[42] Li D.Y., Li W., Appl. Phys. Lett., 79 (2001), 4337.10.1063/1.1428766Open DOISearch in Google Scholar

[43] Haas G.A., Thomas R.E., J. Appl. Phys., 48 (1977), 86.10.1063/1.323329Search in Google Scholar

[44] Rowe J.E., Smith N.V., Phys. Rev. B, 10 (1974), 3207.10.1103/PhysRevB.10.3207Search in Google Scholar

[45] Gartland P.O., Berge S., Slagsvold B.J., Phys. Rev. Lett., 28 (1972), 738.10.1103/PhysRevLett.28.738Open DOISearch in Google Scholar

[46] Delchar T.A., Surf. Sci., 27 (1971), 11.10.1016/0039-6028(71)90158-0Open DOISearch in Google Scholar

[47] Michaelson H.B., J. Appl. Phys., 48 (1977), 4729.10.1063/1.323539Open DOISearch in Google Scholar

[48] Fomenko V.S., Podchernyaeva I.A., Emissionnye I Adsorbtsionnye Svoistva Veshchestv I Materialov, Atomizdat, Moscow, 1975.Search in Google Scholar

[49] Haas G.A., Thomas R.E., J. Appl. Phys., 40 (1969), 3919.10.1063/1.1657116Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo