1. bookVolume 35 (2017): Issue 4 (December 2017)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Thermal conductivity of silicon doped by phosphorus: ab initio study

Published Online: 20 Mar 2018
Volume & Issue: Volume 35 (2017) - Issue 4 (December 2017)
Page range: 717 - 724
Received: 15 Oct 2016
Accepted: 19 Dec 2017
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

An original approach to the theoretical calculations of the heat conductivity of crystals based on the first principles molecular dynamics has been proposed. The proposed approach exploits the kinetic theory of phonon heat conductivity and permits calculating several material properties at certain temperature: specific heat, elastic constant, acoustic velocity, mean phonon scattering time and coefficient of thermal conductivity. The method has been applied to silicon and phosphorus doped silicon crystals and the obtained results have been found to be in satisfactory agreement with corresponding experimental data. The proposed computation technique may be applied to the calculations of heat conductivity of pure and doped semiconductors and isolators.

Keywords

[1] LIDOW A., STRYDOM J., ROOIJ DE M., REUSCH D., GaN Transistors for Efficient Power Conversion, Wiley, 2015.10.1002/9781118844779Search in Google Scholar

[2] BORGES R., Gallium nitride electronic devices for highpower wireless applications, Application Notes, RF Design, 2001, p. 72.Search in Google Scholar

[3] BERNARDONI M., DELMONTE N., MENOZZI R., CS Mantech Conference, Boston, USA, April 23 - 26, 2012.Search in Google Scholar

[4] PEREZ J.A.F., Thermal Study of a GaN-Based HEMT, PhD Dissertation, University of Notre Dame Indiana, 2012.Search in Google Scholar

[5] VISALLI D., Optimization of GaN-on-Si HEMTs for High Voltage Applications, PhD Dissertation, Katholieke Universiteit Leuven, 2011.Search in Google Scholar

[6] FORNETTI F., Characterisation and Performance Optimisation of GaN HEMTs and Amplifiers for Radar Applications, PhD Dissertation, University of Bristol, 2010.Search in Google Scholar

[7] MACFARLANE D.J., Design and fabrication of Al- GaN/GaN HEMTs with high breakdown voltages, PhD Dissertation, School of Engineering, University of Glasgow, 2014.Search in Google Scholar

[8] VITANOV S., PALANKOVSKI V., MAROLDT S., QUAY R., Solid-State Electron., 54 (2010), 1105.10.1016/j.sse.2010.05.026Search in Google Scholar

[9] STACKHOUSE S., STIXRUDE L., Rev. Mineral. Geochem., 71 (2010), 253.10.2138/rmg.2010.71.12Search in Google Scholar

[10] GREEN M.S., J. Chem. Phys., 22 (1954), 398.10.1063/1.1740082Search in Google Scholar

[11] KUBO R., J. Phys. Soc. Japan, 12 (1957), 570.10.1143/JPSJ.12.570Open DOISearch in Google Scholar

[12] KUBO R., Rep. Prog. Phys., 29 (1966), 255.10.1088/0034-4885/29/1/306Open DOISearch in Google Scholar

[13] MULLERPLATHE F.J., Chem. Phys., 106 (1997), 6082.10.1063/1.473271Search in Google Scholar

[14] ZIMAN J.M., Electrons and Phonons, Oxford University Press, 2001.10.1093/acprof:oso/9780198507796.001.0001Search in Google Scholar

[15] KRESSE G., JOUBERT D., Phys. Rev. B, 59 (1999), 1758.10.1103/PhysRevB.59.1758Search in Google Scholar

[16] BLÖCHL P.E., Phys. Rev. B, 50 (1994), 17953.10.1103/PhysRevB.50.179539976227Open DOISearch in Google Scholar

[17] RÓG T., MURZYN K., HINSEN K., KNELLER G.R., J. Comput. Chem., 24 (2003), 657.10.1002/jcc.10243Search in Google Scholar

[18] KAERGER J., GRINBERG F., HEITJANS P., Diffusion fundamentals, Leipzig University, 2005.Search in Google Scholar

[19] ROHLF J.W., Modern Physics from A to Z, John Wiley & Sons Inc, 1994.Search in Google Scholar

[20] BLATT F.J., Modern Physics, McGraw-Hill, New York, 1992.Search in Google Scholar

[21] KLEMENS P.G., GELL M., Mat. Sci. Eng. A, 245 (1998), 143.10.1016/S0921-5093(97)00846-0Search in Google Scholar

[22] TAMURA S., SHIELDS J.A., WOLFE J.P., Phys. Rev. B, 44 (1991), 3001.10.1103/PhysRevB.44.3001Open DOISearch in Google Scholar

[23] NIKANOROV S.P., BURENKOV YU.A., STEPANOV A.V., Sov. Phys. Solid State, 13 (1971), 2516.Search in Google Scholar

[24] OKHOTIN A.S., PUSHKARSKII A.S., GORBACHEV V.V., Thermophysical Properties of Semiconductors, "Atom" Publ. House, 1972. (in Russian).Search in Google Scholar

[25] DESAL P.D., J. Phys. Chem. Ref. Data, 15 (1986), 967.10.1063/1.555761Search in Google Scholar

[26] SHANKS H.R., MAYCOCK P.D., SIDLES P.H., DANIELSON G.C., Phys. Rev., 130 5 (1963), 1743.10.1103/PhysRev.130.1743Search in Google Scholar

[27] GLASSBRENNER C.J., SLACK G.A., Phys. Rev., 134 (1964), A1058.10.1103/PhysRev.134.A1058Search in Google Scholar

[28] LEE Y., HWANG G.S., Phys. Rev. B, 86 (2012), 075202.10.1103/PhysRevB.86.075202Search in Google Scholar

[29] ASHEGHI M., KURAB K., KASNAVI R., GOODSON K.E., J. Appl. Phys., 91 (2002), 5079.10.1063/1.1458057Open DOISearch in Google Scholar

[30] JIN J.S., J. Mechan. Sci.Technol., 28 (2014), 2287.10.1007/s12206-014-0518-3Search in Google Scholar

[31] XIEL J., LEE C., WANG M.-F., LIU Y., FENG H., J. Micromech. Microeng., 19 (2009), 125029.10.1088/0960-1317/19/12/125029Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo