1. bookVolume 35 (2017): Issue 4 (December 2017)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Inhomogeneous GaInNAs quantum wells: their properties and utilization for improving of p-i-n and p-n junction photodetectors

Published Online: 20 Mar 2018
Volume & Issue: Volume 35 (2017) - Issue 4 (December 2017)
Page range: 893 - 902
Received: 23 Oct 2017
Accepted: 12 Dec 2017
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

A theoretical study of electronic structures and optical properties of GaInNAs/GaAs quantum wells has been performed. The inhomogeneous distributions of indium and nitrogen atoms along the growth direction were discussed as the main factors having significant impact on the QWs absorption efficiency. The study was performed by applying the band anticrossing model combined with the envelope function formalism and based on the material parameters which can be found in the literature. Indeed, the electronic band structure of 15 nm thick uniform Ga0.7In0.3N0.02As0.98/GaAs QW was computed together with electronic structures of several types of inhomogeneous QWs, with the same total content of In and N atoms. It was found that presented inhomogeneities lead to significant quantum wells potential modifications and thus to spatial separation of the electrons and holes wave functions. On the other hand, these changes have a significant impact on the absorption coefficient behavior. This influence has been studied on the basis of simulated photoreflectance spectra, which probe the absorption transitions between QW energy subbands. The electronic structure of inhomogeneous QWs under the influence of electric field has also been studied. Two different senses of electric field vector (of p-i-n and n-i-p junctions) have been considered and thus, the improvement of such types of QWs-photodetectors based on inhomogeneous GaInNAs QWs has been proposed.

Keywords

[1] LANGER F., PERL S., HÖFLING S., KAMP M., Appl. Phys. Lett., 106 (2015), 233902.10.1063/1.4922279Search in Google Scholar

[2] BALKAN N., EROL A., SARCAN F., AL-GHURAIBAWI L.F.F., NORDIN M.S., Superlattice Microst., 86 (2015), 467.10.1016/j.spmi.2015.07.032Search in Google Scholar

[3] SARCAN F., NORDIN M.S., KURUOGLU F., EROL A., VICKERS A.J., Superlattice Microst., 102 (2017), 27.10.1016/j.spmi.2016.12.022Search in Google Scholar

[4] BISPING D., HÖFLING S, PUCICKI D., FISCHER M., FORCHEL A., Electron. Lett., 44 (2008), 737.10.1049/el:20081035Open DOISearch in Google Scholar

[5] BISPING D., PUCICKI D., HÖFLING S., HABERMANN S., EWERT D., FISCHER M., KOETH J., FORCHEL A., IEEE Photonic Tech. L., 20 (2008), 1766.10.1109/LPT.2008.2003414Search in Google Scholar

[6] VURGAFTMAN I., MEYER J.R., J. Appl. Phys., 94 (2003), 3675.10.1063/1.1600519Open DOISearch in Google Scholar

[7] TIXIER S., WEBSTER S.E., YOUNG E.C., TIEDJE T., FRANCOEUR S., MASCARENHAS A., WEI P., SCHIETTEKATTE F., Appl. Phys. Lett., 86 (2005), 112113.10.1063/1.1886254Search in Google Scholar

[8] BISPING D., PUCICKI D., FISCHER M., HÖFLING S., FORCHEL A., J. Cryst. Growth, 311 (2009), 1715.10.1016/j.jcrysgro.2008.09.206Search in Google Scholar

[9] BARANOWSKI M., KUDRAWIEC R., SYPEREK M., MISIEWICZ J., SARMIENTO T., HARRIS J.S., Nanoscale Res. Lett., 9 (2014). 10.1186/1556-276X-9-81394210524533740Search in Google Scholar

[10] BANK S.R., BAE H.P., YUEN H.B., WISTEY M.A., GODDARD L.L., HARRIS JR. J.S., Electron. Lett., 42 (2006).10.1049/el:20064022Search in Google Scholar

[11] ŚCIANA B., PUCICKI D., RADZIEWICZ D., SERAFI ´N CZUK J., KOZŁOWSKI J., PASZKIEWICZ B., TŁACZAŁA M., POLOCZEK P., SE˛K G., MISIEWICZ J., Vacuum, 82 (2008), 377.10.1016/j.vacuum.2007.08.005Search in Google Scholar

[12] BARANOWSKI M., KUDRAWIEC R., MISIEWICZ J., HAMMAR M., Appl. Phys. A-Mater., 118 (2015), 479.10.1007/s00339-014-8794-4Search in Google Scholar

[13] PAN Z., LI L.-H., DU Y., LIN Y.-W., WU R.-H., Chinese Phys. Lett., 18 (2001), 659.Search in Google Scholar

[14] LUNA E., TRAMPERT A., PAVELESCU E.-M., PESSA M., New J. Phys., 9 (2007), 1.10.1088/1367-2630/9/11/405Search in Google Scholar

[15] LIU H.F., XIANG N., CHUA S.J., Appl. Phys. Lett., 89 (2006), 071905.10.1063/1.2335804Search in Google Scholar

[16] PUCICKI D., BIELAK K., ´S CIANA B., RADZIEWICZ D., LATKOWSKA-BARANOWSKA M., KOVÁˇC J., VINCZE A., TŁACZAŁA M., J. Cryst. Growth, 433 (2016), 105.10.1016/j.jcrysgro.2015.10.011Search in Google Scholar

[17] CHAN M.C.Y., SURYA CH., WAI P.K.A., J. Appl. Phys., 90 (2001), 197.10.1063/1.1370110Open DOISearch in Google Scholar

[18] RYCZKO K., SE˛K G., MISIEWICZ J., Superlattice Microst., 37 (2005), 273.10.1016/j.spmi.2005.01.003Search in Google Scholar

[19] BURT M.G., Semicond. Sci. Tech., 3 (1988).10.1088/0268-1242/3/12/013Search in Google Scholar

[20] SUN Y., THOMPSON S.E., NISHIDA T., Strain Effect in Semiconductors. Theory and Device Application, Springer Science & Business Media, New York, 2009.Search in Google Scholar

[21] MEI T., J. Appl. Phys., 101 (2007), 013520.10.1063/1.2404791Search in Google Scholar

[22] SHAN W., WALUKIEWICZ W., AGER J.W., HALLER E.E., GEISZ J.F., FRIEDMAN D.J., OLSON J.M., KURTZ S.R., Phys. Rev. Lett., 82 (1999), 1221.10.1103/PhysRevLett.82.1221Search in Google Scholar

[23] VURGAFTMAN I., MEYER J.R., RAM-MOHAN R., J. Appl. Phys., 89 (2001), 5815.10.1063/1.1368156Search in Google Scholar

[24] SALEJDA W., JUST M., TYC H., CMST, 6 (2000).10.12921/cmst.2000.06.01.73-100Search in Google Scholar

[25] SALEJDA W., TYC H., JUST M., Algebraiczne metody rozwia˛zywania równania Schrödingera, Wydawnictwo Naukowe PWN, Warszawa, 2002. (in Polish).Search in Google Scholar

[26] LI Z.S., MENSZ P.M., Numerical simulation of composition grading in active layer of quantum well lasers, in: WU¨N SCHE H.-J., PIPREK J., BANDELOW U., WENZEL H. (Eds.), NUSOD ’05. 5th International Conference on Numerical Simulation of Optoelectronic Devices 2005, Piscataway, New Jersey, 2001, p. 77.Search in Google Scholar

[27] MISIEWICZ J., KUDRAWIEC R., Opto-Electron. Rev., 20 (2012), 101.10.2478/s11772-012-0022-1Search in Google Scholar

[28] TSANG W.T., Appl. Phys. Lett., 40 (1982), 217.10.1063/1.93046Open DOISearch in Google Scholar

[29] LORDI V., YUEN H.B., BANK S.R., HARRIS J.S., Appl. Phys. Lett., 85 (2004), 902.10.1063/1.1777825Search in Google Scholar

[30] PUCICKI D., BIELAK K., BADURA M., DAWIDOWSKI W., ´S CIANA B., Microelectron. Eng., 161 (2016), 13.10.1016/j.mee.2016.03.061Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo