1. bookVolume 35 (2017): Issue 4 (December 2017)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Annealing temperature effect on structural, morphological and optical parameters of mesoporous TiO2 film photoanode for dye-sensitized solar cell application

Published Online: 20 Mar 2018
Volume & Issue: Volume 35 (2017) - Issue 4 (December 2017)
Page range: 868 - 877
Received: 09 Jul 2017
Accepted: 22 Sep 2017
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Use of Degussa P25 titanium-dioxide nanopowder in dye-sensitized solar cell (DSSC) photoanode improves efficiency of the DSSC cell. Annealing of titanium dioxide is required for fabrication of crystalline mesoporous thin film photoanode on transparent conducting glass using doctor blade method. Different annealing temperatures provide different structural, morphological, and optical properties of the photoanode, which may influence the efficiency of the cell. In this paper, energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and UV-Vis-NIR spectroscopicanalysis have been carried out to investigate annealing temperature effect on various structural parameters, mole-fraction, phase-content, and optical bandgap of the TiO2 film photoanode. It was observed that depending on annealing temperature, theratio of polymorphs of Degussa P25 changed substantially. For the change in annealing temperature from 350 °C to 600 °C, variations occurred in crystallite size from 11.9 nm to 24.9 nm, strain from 0.006 to 0.014, specific surface area from 62.77 m2·g-1 to 125.74 m2·g-1, morphology index from 0.49 to 0.64, dislocation density from 5 × 1013 line/m2 to 8 × 1015 line/m2, crystallite per unit surface area from 2 × 1013 m-2 to 2.5 × 1014 m-2, and optical bandgap from 2.4 eV to 3.1 eV.

Keywords

[1] O’REGAN B., GRÄTZEL M., Nature, 353 (1991), 737.10.1038/353737a0Search in Google Scholar

[2] SALAM Z., VIJAYAKUMAR E., SUBRAMANIA A., SIVASANKAR N., MALLICK S., Sol. Energ. Mat. Sol. C., 143 (2015), 250.10.1016/j.solmat.2015.07.001Search in Google Scholar

[3] GHANN W., KANG H., SHEIKH T., YADAV S., CHAVEZ-GIL T., NESBITT F., Sci. Rep.-UK, 7 (2017), 41470.10.1038/srep41470527024728128369Search in Google Scholar

[4] JUNG Y.H., PARK K.-H., OH J.S., KIM D.-H., HONG C.K., Nanoscale Res. Lett., 8 (2013), 37.10.1186/1556-276X-8-37356356523331863Search in Google Scholar

[5] BAI Y., MORA-SERO I., ANGELIS F.D., BISQUERT J., WANG P., Chem. Rev., 114 (2014), 10095.10.1021/cr400606n24661129Search in Google Scholar

[6] ROGERS K.D., LANE D.W., PAINTER J.D., CHAPMAN A., Thin Solid Films, 466 (2004), 97.10.1016/j.tsf.2004.02.023Search in Google Scholar

[7] GARMAROUDI Z.A., MOHAMMADI M.R., J. Sol-Gel Sci. Techn., 76 (2015), 666.10.1007/s10971-015-3819-9Search in Google Scholar

[8] ANDRONIC L., PERNIU D., DUTA A., J. Sol-Gel Sci. Techn., 66 (2013), 472.10.1007/s10971-013-3034-5Search in Google Scholar

[9] LIU L., CHEN X., Chem. Rev., 114 (2014), 9890. 10.1021/cr400624r24956359Search in Google Scholar

[10] LI W., NI C., LIN H., HUANG C.P., SHAH S.I., J. Appl. Phys., 96 (2004), 6663. 10.1063/1.1807520Search in Google Scholar

[11] HART J.N., MENZIES D., CHENG Y.-B., SIMON G.P., SPICCIA L., Sol. Energ. Mat. Sol. C., 91 (2007), 6.10.1016/j.solmat.2006.06.059Search in Google Scholar

[12] BESSERGENEV V.G., MATEUS M.C., REGO A.M.B.D., HANTUSCH M., BURKEL E., Appl. Catal. A-Gen., 500 (2015), 40.10.1016/j.apcata.2015.05.002Search in Google Scholar

[13] WANG W.-K., CHEN J.-J., ZHANG X., HUANG Y.-X., LI W.-W., YU H.-Q., Sci. Rep.-UK., 6 (2016), 20491.10.1038/srep20491475006126864501Open DOISearch in Google Scholar

[14] LI G., RICHTER C.P., MILOT R.L., CAI L., SCHMUTTENMAER C.A., CRABTREE R.H., BRUDVIG G.W., BATISTA V.S., Dalton T., 0 (2009), 10078.10.1039/b908686b19904436Search in Google Scholar

[15] CHEN D., HUANG F., CHENG Y.-B., CARUSO R.A., Adv. Mater., 21 (2009), 2206.10.1002/adma.200802603Search in Google Scholar

[16] MATHEWS N.R., MORALES E.R., CORTES-JACOME M.A., ANTONIO J.A.T., Sol. Energy, 83 (2009), 1499.10.1016/j.solener.2009.04.008Search in Google Scholar

[17] OHNO T., SARUKAWA K., TOKIEDA K., MATSUMURA M., J. Catal., 203 (2001), 82.10.1006/jcat.2001.3316Search in Google Scholar

[18] OHTANI B., PRIETO-MAHANEY O.O., LI D., ABE R., J. Photoch. Photobio. A., 216 (2010), 179.10.1016/j.jphotochem.2010.07.024Search in Google Scholar

[19] CHEN Y., STATHATOS E., DIONYSIOU D.D., J. Photoch. Photobio. A., 203 (2009), 192.10.1016/j.jphotochem.2009.01.019Search in Google Scholar

[20] RAJ K.J.A., VISWANATHAN B., Indian J. Chem. A., 48A (2009), 1378.Search in Google Scholar

[21] RAJAMANICKAM A.T., THIRUNAVUKKARASU P., DHANAKODI K., J. Mater. Sci.-Mater. El., 26 (2015), 8933.10.1007/s10854-015-3575-1Search in Google Scholar

[22] TRIPATHI A.K., SINGH M.K., MATHPAL M.C., MISHRA S.K., AGARWAL A., J. Alloy. Compd., 549 (2013), 114.10.1016/j.jallcom.2012.09.012Search in Google Scholar

[23] HOSSAIN M.K., PERVEZ M.F., TAYYABA S., UDDIN M.J., MORTUZA A.A., MIA M.N.H., MANIR M.S., KARIM M.R., KHAN M.A., Mater. Sci.-Poland, 2017 (Tentatively Accepted).Search in Google Scholar

[24] HOSSAIN M.K., PERVEZ M.F., MIA M.N.H., MORTUZA A.A., RAHAMAN M.S., KARIM M.R., ISLAM J.M.M., AHMED F., KHAN M.A., Results Phys., 7 (2017), 1516.10.1016/j.rinp.2017.04.011Search in Google Scholar

[25] SPURR R.A., MYERS H., Anal. Chem., 29 (1957), 760.10.1021/ac60125a006Open DOISearch in Google Scholar

[26] ZAK A.K., MAJID W.H.A., ABRISHAMI M.E., YOUSEFI R., Solid State Sci., 13 (2011), 251.10.1016/j.solidstatesciences.2010.11.024Search in Google Scholar

[27] CULLITY B.D., STOCK S.R., Powder Photographs, in: COHEN M. (Ed.), Elements of X-ray Diffraction, Addison-Wesley, USA, 1956, p. 149.Search in Google Scholar

[28] BINDU P., THOMAS S., J. Theor. Appl. Phys., 8 (2014), 123.10.1007/s40094-014-0141-9Search in Google Scholar

[29] AKBARI B., TAVANDASHTI M.P., ZANDRAHIMI M., Iran. J. Mater. Sci. Eng., 8 (2011), 48.Search in Google Scholar

[30] CHEN J., LI Y., WANG Y., YUN J., CAO D., Mater. Res. Bull., 39 (2004), 185.10.1016/j.materresbull.2003.10.017Search in Google Scholar

[31] ZHANG J., XIAO X., NAN J., J. Hazard. Mater., 176 (2010), 617.10.1016/j.jhazmat.2009.11.074Search in Google Scholar

[32] THEIVASANTHI T., ALAGAR M., Chem. Phys., (2013), 1307.Search in Google Scholar

[33] KELLY A., KNOWLES K.M., Crystallography and Crystal Defects, John Wiley & Sons Ltd., Chichester, UK, 2012.10.1002/9781119961468Search in Google Scholar

[34] SALEEM M., Int. J. Phys. Sci., 7 (2012), 2971.Search in Google Scholar

[35] MAJOR C., NEMETH A., RADNOCZI G., CZIGANY Z., FRIED M., LABADI Z., BARSONY I., Appl. Surf. Sci., 255 (2009), 8907.10.1016/j.apsusc.2009.06.088Search in Google Scholar

[36] EL-NAHASS M.M., ALI M.H., EL-DENGLAWEY A., T. Nonferr. Metal. Soc., 22 (2012), 3003.10.1016/S1003-6326(11)61563-XSearch in Google Scholar

[37] KOLAY A., KUMAR P.N., KUMAR S.K., DEEPA M., Phys. Chem. Chem. Phys., 19 (2017), 4607.10.1039/C6CP07364FOpen DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo