1. bookVolume 35 (2017): Issue 3 (October 2017)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Novel lighting properties of white LEDs with two-layered remote phosphor package using red-emitting α-SrO·3B2O3:Sm2+ phosphor

Published Online: 31 Oct 2017
Volume & Issue: Volume 35 (2017) - Issue 3 (October 2017)
Page range: 618 - 625
Received: 10 Feb 2017
Accepted: 22 Aug 2017
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

This paper investigates a method for improving the lighting performance of white light-emitting diodes (WLEDs), packaged using two separating remote phosphor layers, yellow-emitting YAG:Ce phosphor layer and red-emitting α-SrO·3B2O3:Sm2+ phosphor layer. The thicknesses of these two layers are 800 μm and 200 μm, respectively. Both of them have been examined at average correlated color temperatures (CCT) of 7700 K and 8500 K. For this two-layer model, the concentration of red phosphor has been varied from 2 % to 30 % in the upper layer, while in the lower layer the yellow phosphor concentration was kept at 15 %. It was found interesting that the lighting properties, such as color rendering index (CRI) and luminous flux, are enhanced significantly, while the color uniformity is maintained at a level relatively close to the level in one-layer configuration (measured at the same correlated color temperature). Besides, the transmitted and reflected light of each phosphor layer have been revised by combining Kubelka-Munk and Mie-Lorenz theories. Through the analysis, it is demonstrated that the packaging configuration of two-layered remote phosphor that contains red-emitting α-SrO·3B2O3:Sm2+ phosphor particles provides a practical solution to general WLEDs lighting.

Keywords

[1] PIN-CHAO W., YAN-KUIN S., CHUN-LIANG L., GUAN-SYUN H., IEEE Electr. Device L., 6 (2014), 657.Search in Google Scholar

[2] ARIK M., BECKER C., WEAVER S., PETROSKI J., Proc. SPIE 5187, 64 (2004), 64.Search in Google Scholar

[3] MUELLER-MACH R., MUELLER G.O., KRAMES M.R., TROTTIER T., IEEE J. Sel. Top. Quant., 2 (2002), 339.10.1109/2944.999189Open DOISearch in Google Scholar

[4] YOU J.P., TRAN N.T., LIN Y.C., HE Y., SHI F.G., J. Electron. Mater., 6 (2009), 761.10.1007/s11664-009-0754-ySearch in Google Scholar

[5] NARENDRAN N., GU Y., FREYSSINIER-NOVA J.P., ZHU Y., Phys. Status Solidi. A, 6 (2005), R60.10.1002/pssa.200510015Search in Google Scholar

[6] LUO H., KIM J.K., SCHUBERT E.F., CHO J., SONE C., PARK Y., Appl. Phys. Lett., 24 (2005), 243505.10.1063/1.1949282Search in Google Scholar

[7] KIM J.K., LUO H., SCHUBERT E.F., CHO J., SONE C., PARK Y., Jpn. J. Appl. Phys., 21 (2005), L649.10.1143/JJAP.44.L649Search in Google Scholar

[8] SEONG, K.K., YOO T.W., KIM B.-S., LEE S.M., LEE Y.S., PARK L.S., Mol. Cryst. Liq. Cryst., 1 (2012), 33, [9] ALLEN S.C., STECKL A.J., J. Disp. Technol., 2 (2007), 155.Search in Google Scholar

[10] ALLEN S.C., STECKL A.J., J. Appl. Phys., 92 (2008), 143309.10.1063/1.2901378Search in Google Scholar

[11] MASUI H., NAKAMURA S., DENBAARS S.P., Jpn. J. Appl. Phys., 34 (2006), L910.10.1143/JJAP.45.L910Search in Google Scholar

[12] QUOC A.N.D., LAI M.F., MA H.Y., LEE H.Y., J. Chin. Inst. Eng., 38 (2015), 1354.Search in Google Scholar

[13] MUELLER-MACH R., MUELLER G., KRAMES M.R., HOPPE H.A., STADLER F., SCHNICK W., JUESTEL T., SCHMIDT P., Phys. Status Solidi. A, 9 (2005), 1727.10.1002/pssa.200520045Search in Google Scholar

[14] RUN H., BIN C., YONG Z., YONGMING Z., XIAOBING L., IEEE Photonic. Tech. L., 12, (2013), 156.Search in Google Scholar

[15] CHUNG H.C., SYUAN J.G., TING S.Z., SHENG Y.C., IEEE Electr. Device L., 7 (2016), 898.10.1109/LED.2016.2576498Open DOISearch in Google Scholar

[16] ZHU Y., NARENDRAN N., Jpn. J. Appl. Phys., 10R (2010), 100203.10.1143/JJAP.49.100203Search in Google Scholar

[17] YEN W.M., WEBER M.J., Inorganic Phosphors: Compositions, Preparation and Optical Properties, CRC Press, Washington D.C., 2004.Search in Google Scholar

[18] MINH Q.H. TRAN, NHAN K.H. NGUYEN, QUOC ANH D.N., J. Chin. Inst. Eng., 4 (2016), 313.Search in Google Scholar

[19] KUBELKA P., MUNK F., Z. Tech. Phys., 12 (1931), 593.Search in Google Scholar

[20] MUDGETT P.S., RICHARDS L.W., Appl. Optics, 10 (1971), 1485.10.1364/AO.10.00148520111152Search in Google Scholar

[21] BRINKWORTH B.J., Appl. Optics, 1 (1972), 1434.10.1364/AO.11.00143420119163Search in Google Scholar

[22] REISS H., Radiative Transfer in Nontransparent Dispersed Media, Springer, Berlin, 1988.10.1007/BFb0108658Search in Google Scholar

[23] ZHONG J., XIE M., OU Z., ZHANG R., HUANG M., ZHAO F., Proceedings Symposium on Photonics and Optoelectronics (SOPO), Wuhan, 2011.Search in Google Scholar

[24] WYSZECKI G., STILES W.S., Color Science - Concepts and Methods, Quantitative Data and Formulae, Wiley, New York, 1982.Search in Google Scholar

[25] HUANTING C., HUI S.Y., IEEE T. Ind. Electron., 2 (2014), 784.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo