1. bookVolume 33 (2015): Issue 4 (December 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Investigation on the preparation and mechanical properties of porous Cu35Ni15Cr alloy for a molten carbonate fuel cell

Published Online: 06 Jan 2016
Volume & Issue: Volume 33 (2015) - Issue 4 (December 2015)
Page range: 887 - 893
Received: 09 May 2015
Accepted: 29 Sep 2015
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The preparation process of porous Cu35Ni15Cr alloy was studied in this paper. The effect of ball milling time and sintering temperature on the porosity of Cu35Ni15Cr alloy was identified. It was found that 18 h ball milling and 950 °C sintering are the most promising parameters for the preparation of porous Cu35Ni15Cr alloy. The products have a ~62 % porosity. The alloy consists of an α phase and β phase. The influence of deformation temperature and loading rate on the mechanical properties of Cu35Ni15Cr alloys was investigated. The results show that with decreasing deformation temperature, the yield strength and elastic modulus of the porous alloy increase. With the increase of loading rate, the yield strength of these alloys shows an increasing trend, but the elastic modulus is on a steady level.

Keywords

[1] Frangini S., J. Power Sources, 182 (2008), 462.10.1016/j.jpowsour.2007.11.100Search in Google Scholar

[2] Andujar J.M., Segrua F., Renew Sustain Ener. Rev., 13 (2009), 2309.Search in Google Scholar

[3] Li G., Thomas B.G., Stubbins J.F., Metall. Mater. Trans. A, 31 (2000), 2491.10.1007/s11661-000-0194-zSearch in Google Scholar

[4] Tsuyoshi N., Vinay G., Yoshimi O., Meiten K., Ram N.S., Alain T., Etienne D., J Power Sources, 104 (2002), 181.10.1016/S0378-7753(01)00910-7Search in Google Scholar

[5] Chawla N., Deng X., Mat. Sci. Eng. A-Struct., 390 (2005), 98.10.1016/j.msea.2004.08.046Search in Google Scholar

[6] Cedergren J., Melin S., Lidstrom P., Power Technol., 160 (2005), 161.10.1016/j.powtec.2005.08.023Search in Google Scholar

[7] Wee J.H., Mater. Chem. Phys., 98 (2006), 273.10.1016/j.matchemphys.2005.09.018Search in Google Scholar

[8] Kim D., Lee I., Lim H., Lee D., J. Power Sources, 109 (2002), 347.10.1016/S0378-7753(02)00085-XSearch in Google Scholar

[9] Kim Y.S., Lee K.Y., Chun H.S., J. Power Sources, 99 (2001), 26.10.1016/S0378-7753(00)00689-3Search in Google Scholar

[10] Wee J.H., Mater. Chem. Phys., 101 (2007), 322.10.1016/j.matchemphys.2006.06.006Search in Google Scholar

[11] Lee H., Lee I., Lee D., Lim H., J. Power Sources, 162 (2006), 1088.10.1016/j.jpowsour.2006.07.072Search in Google Scholar

[12] Kim G., Moon Y., Lee D., J. Power Sources, 104 (2002), 181.10.1016/S0378-7753(01)00910-7Search in Google Scholar

[13] Lei P., Chen J., Li W., Ren Y.J., Qiu W., Chen J.L., Appl. Mech. Mat., 303 (2013), 2490.10.4028/www.scientific.net/AMM.303-306.2490Search in Google Scholar

[14] Chen J., Huang Z.H., Li W., Ren Y.J., He Z., Qiu W., He J.J., Chen J.L., Key Eng. Mat., 573 (2014), 105.10.4028/www.scientific.net/KEM.573.105Search in Google Scholar

[15] Wang B., Zhang E., Int. J. Mech. Sci., 50 (2008), 550.Search in Google Scholar

[16] Kim Y.S., Chun H.S., J. Power Source, 84 (1999), 80.10.1016/S0378-7753(99)00306-7Search in Google Scholar

[17] Hwang E.R., Park J.W., Kim Y.D., Kim S.J., Kang S.G., J. Power Source, 69 (1997), 55.10.1016/S0378-7753(97)02566-4Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo