1. bookVolume 33 (2015): Issue 4 (December 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Structure and thermal expansion of liquid bismuth

Published Online: 06 Jan 2016
Volume & Issue: Volume 33 (2015) - Issue 4 (December 2015)
Page range: 767 - 773
Received: 16 Dec 2014
Accepted: 25 Aug 2015
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Experimental structural data for liquid Bi were used for estimation of the main structure parameters as well as the thermal expansion coefficient both in supercooled and superheated temperature ranges. It was shown that the equilibrium melt had a positive thermal expansion coefficient within a temperature range upon melting and a negative one at higher temperatures. The former was related to structure changes upon melting, whereas the latter with topologic disordering upon further heating. It was found that the superheated melt had a negative thermal expansion coefficient. The results obtained from structural data were compared with the thermal expansion coefficient calculated from the data of density for liquid Bi.

Keywords

[1] In-Kook Suh, Ohta H., Waseda Y., J. Mater. Sci., 23 (1988), 757.10.1007/BF01174717Search in Google Scholar

[2] Ocken H., Wagner C.N. I., Phys. Rev., 1 (1966), 122.10.1103/PhysRev.149.122Search in Google Scholar

[3] Bar’Yakhtar V. Mikhailova L.E., Il’Inskii A.G., Romanova A.V., Khristenko T.M., JETP, 68 (5) (1989), 811.Search in Google Scholar

[4] Hongbo L., Wang X., Cao Q., Zhang D., Zhang J., Hu T., Mao H.-K., Jiang J.-Z., PNAS, 110 (25) (2013), 10068.10.1073/pnas.1307967110369087223733928Search in Google Scholar

[5] Crichton W.A., Mezouar M., Grande T., Stolen S., Grzechnik A., Nature, 414 (2001), 622.10.1038/414622a11740555Search in Google Scholar

[6] McMillan P.F., Nat. Mater., 1 (2002), 19.10.1038/nmat71612618843Search in Google Scholar

[7] Yargerand J.L., Wolf G.H., Science, 306 (2004), 206.10.1126/science.306.5694.20615472043Search in Google Scholar

[8] Wilding M.C., Wilson M., McMillan P.F., Chem. Soc. Rev., 35 (2006), 964.10.1039/b517775h17003901Search in Google Scholar

[9] McMillan P.F., Wilson M., Wilding M.C., Daisenberger D., Mezouar M., Greaves N.G., J. Phys.-Condens. Mat., 19 (2007), 415101.10.1088/0953-8984/19/41/41510128192313Search in Google Scholar

[10] Cadien A., Hu Q., Meng Y., Cheng Y., Chen M., Shu J., Mao H., Sheng H., Phys. Rev. Lett., 110 (2013), 125503.10.1103/PhysRevLett.110.12550325166820Search in Google Scholar

[11] Barrett C.S., Aust. J. Phys., 13 (1960), 209.10.1071/PH600209aSearch in Google Scholar

[12] Greenberg Y., Yahel E., Caspi E.N., Benmore C., Beuneu B., Dariel M.P., Makov G., EPL 86 (2009), 36004.10.1209/0295-5075/86/36004Search in Google Scholar

[13] Souto J., Alemany M., Gallego L., Gonzalez L., Gonzalez D., Phys. Rev. B, 81 (2010), 134201.10.1103/PhysRevB.81.134201Search in Google Scholar

[14] Richter H., Breitling G., Adv. Phys., 16 (1968), 293.10.1080/00018736700101405Search in Google Scholar

[15] Orton Z.B.R., Z. Naturforsch. A, 34 (1979), 1547.10.1515/zna-1979-1226Search in Google Scholar

[16] Krebs H., J. Non-Cryst. Solids, 1 (1969), 455.10.1016/0022-3093(69)90008-8Search in Google Scholar

[17] Davidovic M., Stojic M., Jovic D.J., J. Phys. C-Solid State Phys., 16 (1983), 2053.10.1088/0022-3719/16/11/008Search in Google Scholar

[18] Davidovic M., Stojic M., Jovic D.J., J. Non-Cryst. Solids, 61 – 62 (1984), 517.10.1016/0022-3093(84)90598-2Search in Google Scholar

[19] Bellissent-Funel M.C., Bellisent R., J. Non-Cryst. Solids, 65 (1984), 383.10.1016/0022-3093(84)90061-9Search in Google Scholar

[20] Matsuno N., Kamiyama H., Ishii Y., Momiuchi M., Jpn. J. Appl. Phys., 25 (1986), 275.10.1143/JJAP.25.275Search in Google Scholar

[21] Momiuchi M., J. Phys. Soc. Jpn., 55 (1986), 200.10.1143/JPSJ.55.200Search in Google Scholar

[22] Emuna M., Mayo M., Greenberg Y., Caspi E.N., Beuneu B., Yahel E., Makov G., J. Chem. Phys., 140 (2014), 094502.10.1063/1.486709824606363Search in Google Scholar

[23] Haoran G., Chunjing S., Rui W., Xiaogang Q.I., Ning Z., Chinese Sci. Bull., 15 (2007), 2031.Search in Google Scholar

[24] Cromer D.T., Waber J.T., Acta Crystallogr., 18 (1965), 104.10.1107/S0365110X6500018XSearch in Google Scholar

[25] Kroghmoe J., Acta Crystallogr., 9 (1956), 951.Search in Google Scholar

[26] Plevachuk Y., Sklyarchuk V., Yakymovych A., Shtablavyi I., Methods and facilities for thermophysical and structure investigations of liquid metallic alloys, in: 6th International Conference Electromagnetic Processing of Materials, Forschungszentrum, Dresden-Rossendorf-Dresden, 2009, p. 415.Search in Google Scholar

[27] Mayo M., Yahel E., Greenberg Y., Caspi E.N., Beuneu B., Makov G., J. Appl. Crystallogr., 46 (2013), 1582.10.1107/S002188981302431XSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo