1. bookVolume 33 (2015): Issue 3 (September 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Graphene synthesis: a Review

Published Online: 30 Aug 2016
Volume & Issue: Volume 33 (2015) - Issue 3 (September 2015)
Page range: 566 - 578
Received: 17 Nov 2014
Accepted: 13 May 2015
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Graphene has achieved a great amount of popularity and interest from the science world because of its extraordinary physical, mechanical and thermal properties. Graphene is an allotrope of carbon, having one-atom-thick planar sheets of sp2 bonded carbon atoms densely packed in a honeycomb crystal lattice. Many methods to synthesize graphene have been developed over a short period and we believe it is necessary to create a list of the most notable approaches. This article focuses on the methods to synthesize graphene in an attempt to summarize and document advancements in the synthesis of graphene research and future prospects.

Keywords

[1] GEIM A.K., NOVOSELOV K.S., Nat Mater., 6 (2007), 183.10.1038/nmat184917330084Search in Google Scholar

[2] ALLEN M.J., TUNG V.C., KANER R.B., Chem. Rev., 110 (2009), 132.10.1021/cr900070d19610631Search in Google Scholar

[3] ENOKI T., SUZUKI M., ENDO M., Graphite Intercalation Compounds and Applications, Oxford University Press, New York, 2003.10.1093/oso/9780195128277.001.0001Search in Google Scholar

[4] DELHAES P., Graphite and precursors, CRC Press, Amsterdam, 2001.10.1201/9781482296921Search in Google Scholar

[5] BOEHM H.P., SETTON R., STUMPP E., Pure. Appl.Chem., 66 (1994), 1893.10.1351/pac199466091893Search in Google Scholar

[6] CASTILLO-MARTINEZ E., CARRETERO-GONZALEZ J., SOVICH J., LIMA M.D., J. Mater. Chem. A, 2 (2014), 221.10.1039/C3TA13292GSearch in Google Scholar

[7] PAULING L., The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry, Cornell University Press, Ithaca (NY), 1960.Search in Google Scholar

[8] GEIM A.K., Science, 324 (2009), 1530.10.1126/science.115887719541989Search in Google Scholar

[9] KOTOV N.A., Nature, 442 (2006), 254.10.1038/442254a16855576Search in Google Scholar

[10] RAO C., BISWAS K., SUBRAHMANYAM K., GOVINDARAJ A., J. Mater. Chem., 19 (2009), 2457.10.1039/b815239jSearch in Google Scholar

[11] SOLDANO C., MAHMOOD A., DUJARDIN E., Carbon, 48 (2010), 2127.10.1016/j.carbon.2010.01.058Search in Google Scholar

[12] KRISHNAMOORTHY K., KIM G.-S., KIM S.J., Ultrason. Sonochem., 20 (2013), 644.10.1016/j.ultsonch.2012.09.00723089166Search in Google Scholar

[13] EDWARDS R.S., COLEMAN K.S., Nanoscale, 5 (2013) 38.10.1039/C2NR32629ASearch in Google Scholar

[14] WARNER J.H., SCHÄ FFEL F., BACHMATIUK A., RÜMMELI M.H., Graphene: Fundamentals and emergent applications, Elsevier, Oxford, 2012.Search in Google Scholar

[15] NOVOSELOV K.S., GEIM A.K., MOROZOV S., JIANG D., ZHANG Y., DUBONOS S., Science, 306 (2004), 666.10.1126/science.110289615499015Search in Google Scholar

[16] DATO A., RADMILOVIC V., LEE Z., PHILLIPS J., FRENKLACH M., Nano Lett., 8 (2008), 2012.10.1021/nl801156618529034Search in Google Scholar

[17] REINA A., JIA X., HO J., NEZICH D., SON H., BULOVIC V., Nano Lett., 9 (2008), 30.10.1021/nl801827v19046078Search in Google Scholar

[18] VERDEJO R., BERNAL M.M., ROMASANTA L.J., LOPEZ-MANCHADO M.A., J. Mater. Chem., 21 (2011), 3301.10.1039/C0JM02708ASearch in Google Scholar

[19] PARK S., RUOFF R.S., Nat. Nanotechnol., 4 (2009), 217.10.1038/nnano.2009.5819350030Search in Google Scholar

[20] SEGAL M., Nat. Nanotechnol., 4 (2009), 612.10.1038/nnano.2009.27919809441Search in Google Scholar

[21] GEIM A.K., MACDONALD A.H., Phys. Today, 60 (8) (2007), 35.10.1063/1.2774096Search in Google Scholar

[22] SHENDEROVA O., ZHIRNOV V., BRENNER D., Crit. Rev. Solid State, 27 (2002), 227.10.1080/10408430208500497Search in Google Scholar

[23] SAKAMOTO J., HEIJST VAN J., LUKIN O., SCHLÜTER A.D., Angew. Chem. Int. Edit., 48 (2009), 1030.10.1002/anie.20080186319130514Search in Google Scholar

[24] MEYER J.C., GEIM A.K., Nature, 446 (2007), 60.10.1038/nature0554517330039Search in Google Scholar

[25] MITTAL G., DHAND V., RHEE K.Y., PARK S.-J., LEE W.R., J. Ind. Eng. Chem., 21 (2015), 11.10.1016/j.jiec.2014.03.022Search in Google Scholar

[26] NOVOSELOV K., JIANG D., SCHEDIN F., BOOTH T., KHOTKEVICH V., MOROZOV S., P. Natl. Acad. Sci. USA, 102 (2005), 10451.10.1073/pnas.0502848102118077716027370Search in Google Scholar

[27] JAYASENA B., SUBBIAH S., Nanoscale Res Lett., 6 (2011), 95.10.1186/1556-276X-6-95321224521711598Search in Google Scholar

[28] PATON K.R., VARRLA E., BACKES C., SMITH R.J., KHAN U., Nat. Mater., 13 (2014), 624.10.1038/nmat394424747780Search in Google Scholar

[29] MCALLISTER M.J., LI J.-L., ADAMSON D.H., SCHNIEPP H.C., ABDALA A.A., LIU J., Chem.Mater., 19 (2007), 4396.10.1021/cm0630800Search in Google Scholar

[30] ZHANG Y., LI D., TAN X., ZHANG B., RUAN X., LIU H., Carbon, 54 (2013), 143.10.1016/j.carbon.2012.11.012Search in Google Scholar

[31] ZHAN D., SUN L., NI Z.H., LIU L., FAN X.F., WANG Y., Adv. Funct. Mater., 20 (2010), 3504.10.1002/adfm.201000641Search in Google Scholar

[32] LEE H., KANG J., CHO M.S., CHOI J.-B., LEE Y., J. Mater. Chem., 21 (2011), 18215.10.1039/c1jm13364kSearch in Google Scholar

[33] BRUMFIEL G., Nature, 10 (2009), 1038.Search in Google Scholar

[34] JIAO L., ZHANG L., WANG X., DIANKOV G., DAI H., Nature, 458 (2009), 877.10.1038/nature07919Search in Google Scholar

[35] KOSYNKIN D.V., HIGGINBOTHAM A.L., SINITSKII A., LOMEDA J.R., DIMIEV A., PRICE B.K., Nature, 458 (2009), 872.10.1038/nature07872Search in Google Scholar

[36] CHEN J., CHEN L., ZHANG Z., LI J., WANG L., JIANG W., Carbon, 50 (2012), 1934.10.1016/j.carbon.2011.12.044Search in Google Scholar

[37] CHOUCAIR M., THORDARSON P., STRIDE J.A., Nat.Nanotechnol., 4 (2008), 30.10.1038/nnano.2008.365Search in Google Scholar

[38] BISWAL M., BANERJEE A., DEO M., OGALE S., Energ.Environ Sci., 6 (2013), 1249.10.1039/c3ee22325fSearch in Google Scholar

[39] CHEN G., WU D., WENG W., WU C., Carbon, 41 (2003), 619.10.1016/S0008-6223(02)00409-8Search in Google Scholar

[40] RAMANATHAN T., STANKOVICH S., DIKIN D., LIU H., SHEN H., NGUYEN S., J. Polym. Sci. Pol. Phys., 45 (2007), 2097.10.1002/polb.21187Search in Google Scholar

[41] DREYER D.R., PARK S., BIELAWSKI C.W., RUOFF R.S., Chem. Soc. Rev., 39 (2010), 228.10.1039/B917103GSearch in Google Scholar

[42] ESWARAIAH V., ARAVIND S.S.J., RAMAPRABHU S., J. Mater. Chem., 21 (2011), 6800.10.1039/c1jm10808eSearch in Google Scholar

[43] DIKIN D.A., STANKOVICH S., ZIMNEY E.J., PINER R.D., Nature, 448 (2007), 457.10.1038/nature0601617653188Search in Google Scholar

[44] NAIR R., WU H., JAYARAM P., GRIGORIEVA I., GEIM A., Science, 335 (2012), 442.10.1126/science.121169422282806Search in Google Scholar

[45] SHEN B., LU D.D., ZHAI W.T., ZHENG W.G., J.MATER. CHEM. C, 1 (2013), 50.10.1039/C2TC00044JSearch in Google Scholar

[46] GURUNATHAN S., HAN J.W., EPPAKAYALA V., KIM J.-H., Int. J. Nanomed., 8 (2013), 1015.10.2147/IJN.S42047365562323687445Search in Google Scholar

[47] PARVEZ K., LI R., PUNIREDD S.R., HERNANDEZ Y., HINKEL F., WANG S., ACS Nano, 7 (2013), 3598.10.1021/nn400576v23531157Search in Google Scholar

[48] LU J., YANG J.-X., WANG J., LIM A., WANG S., LOH K.P., ACS Nano, 3 (2009), 2367.10.1021/nn900546b19702326Search in Google Scholar

[49] HERNANDEZ Y., NICOLOSI V., LOTYA M., BLIGHE F.M., SUN Z., DE S., Nat. Nanotechnol., 3 (2008), 563.10.1038/nnano.2008.21518772919Search in Google Scholar

[50] ALZARI V., NUVOLI D., SCOGNAMILLO S., PICCININI M., GIOFFREDI E., MALUCELLI G., J. Mater. Chem., 21 (2011), 8727.10.1039/c1jm11076dSearch in Google Scholar

[51] NUVOLI D., VALENTINI L., ALZARI V., SCOGNAMILLO S., BON S.B., PICCININI M., J. Mater. Chem., 21 (2011), 3428. 10.1039/C0JM02461ASearch in Google Scholar

[52] ZHOU M., TIAN T., LI X.F., SUN X.D., ZHANG J., CUI P., Int. J. Electrochem. Sc., 9 (2014), 810.Search in Google Scholar

[53] LOTYA M., HERNANDEZ Y., KING P.J., SMITH R.J., NICOLOSI V., KARLSSON L.S., J. Am. Chem. Soc., 131 (2009), 3611.10.1021/ja807449u19227978Search in Google Scholar

[54] LIU L., ZHAI J., ZHU C., GAO Y., WANG Y., HAN Y., Biosens. Bioelectron., 63 (2015), 483.10.1016/j.bios.2014.07.07425129511Search in Google Scholar

[55] XU Y., BAI H., LU G., LI C., SHI G., J. Am. Chem. Soc., 130 (2008), 5856.10.1021/ja800745y18399634Search in Google Scholar

[56] HAO R., QIAN W., ZHANG L., HOU Y., Chem. Commun., 48 (2008), 6576.10.1039/b816971c19057784Search in Google Scholar

[57] PATIL A.J., VICKERY J.L., SCOTT T.B., MANN S., Adv. Mater., 21 (2009), 3159.10.1002/adma.200803633Search in Google Scholar

[58] ENGLERT J.M., RÖHRL J., SCHMIDT C.D., GRAUPNER R., HUNDHAUSEN M., HAUKE F., Adv. Mater., 21 (2009), 4265.10.1002/adma.200901578Search in Google Scholar

[59] SU Q., PANG S., ALIJANI V., LI C., FENG X., MÜLLEN K., Adv. Mater., 21 (2009), 3191.10.1002/adma.200803808Search in Google Scholar

[60] WOLTORNIST S.J., OYER A.J., CARRILLO J.-M.Y., DOBRYNIN A.V., ADAMSON D.H., ACS Nano, 7 (2013), 7062.10.1021/nn402371c23879536Search in Google Scholar

[61] DENG C., HU H., GE X., HAN C., ZHAO D., SHAO G., Ultrasonics., 18 (2011), 932.10.1016/j.ultsonch.2011.01.00721315647Search in Google Scholar

[62] PINJARI D.V., PANDIT A.B., Ultrasonics., 18 (2011), 1118.10.1016/j.ultsonch.2011.01.00821324726Search in Google Scholar

[63] SAFARIFARD V., MORSALI A., Ultrasonics., 19 (2012), 823.10.1016/j.ultsonch.2011.12.01322261473Search in Google Scholar

[64] RAMADOSS A., KIM S.J., J. Alloy. Compd., 544 (2012), 115.10.1016/j.jallcom.2012.08.005Search in Google Scholar

[65] LEE J.K., LEE K., LEE K.I., GAP L.J., IL L.G., Ball-milled graphene nano-powder or ribbon purifying method, involves separating magnetic impurities during stirring suspension using magnet, where impurities are incorporated into graphene powder during ball-milling, Korea Institute of Science and Technology, Seoul, p. 7.Search in Google Scholar

[66] LEON V., QUINTANA M., HERRERO M.A., FIERRO J.L.G., HOZ DE LA A., PRATO M., Chem. Commun., 47 (2011), 10936.10.1039/c1cc14595a21909539Search in Google Scholar

[67] LIN T., TANG Y., WANG Y., BI H., LIU Z., HUANG F., Energ. Environ Sci., 6 (2013), 1283.10.1039/c3ee24324aSearch in Google Scholar

[68] BORAH M., DAHIYA M., SHARMA S., MATHUR R.B., DHAKATE S.R., Mater. Focus, 3 (2014), 300.10.1166/mat.2014.1185Search in Google Scholar

[69] LIU L., XIONG Z., HU D., WU G., CHEN P., Chem. Commun., 49 (2013), 7890.10.1039/c3cc43670e23900550Search in Google Scholar

[70] PAN D., WANG S., ZHAO B., WU M., ZHANG H., WANG Y., Chem. Mater., 21 (2009), 3136.10.1021/cm900395kSearch in Google Scholar

[71] EL-KADY M.F., STRONG V., DUBIN S., KANER R.B., Science, 335 (2012), 1326.10.1126/science.121674422422977Search in Google Scholar

[72] MILLER J.R., Science, 335 (2012), 1312.10.1126/science.121913422422970Search in Google Scholar

[73] COTE L.J., CRUZ-SILVA R., HUANG J., J. Am. Chem. Soc., 131 (2009), 11027.10.1021/ja902348k19601624Search in Google Scholar

[74] GAO E., WANG W., SHANG M., XU J., Phys. Chem. Chem. Phys., 13 (2011), 2887.10.1039/C0CP01749C21161101Search in Google Scholar

[75] ABDELSAYED V., MOUSSA S., HASSAN H.M., ALURI H.S., COLLINSON M.M., EL-SHALL M.S., J. Phys. Chem. Lett., 1 (2010), 2804. 10.1021/jz1011143Search in Google Scholar

[76] HUANG L., LIU Y., JI L.-C., XIE Y.-Q., WANG T., SHI W.-Z., Carbon, 49 (2011), 2431.10.1016/j.carbon.2011.01.067Search in Google Scholar

[77] CHICHKOV B., MOMMA C., NOLTE S., ALVENSLEBEN VON F., TÜNNERMANN A., Appl. Phys. A, 63 (1996), 109.10.1007/BF01567637Search in Google Scholar

[78] SOKOLOV D.A., SHEPPERD K.R., ORLANDO T.M., J. Phys. Chem. Lett., 1 (2010), 2633.10.1021/jz100790ySearch in Google Scholar

[79] TRUSOVAS R., RATAUTAS K., RAČIUKAITIS G., BARKAUSKAS J., STANKEVIČIENĖ I., NIAURA G., Carbon, 52 (2013), 574.10.1016/j.carbon.2012.10.017Search in Google Scholar

[80] ZHOU Y., BAO Q., VARGHESE B., TANG L.A.L., TAN C.K., SOW C.H., Adv. Mater., 22 (2010), 67.10.1002/adma.20090194220217699Search in Google Scholar

[81] AMINI S., GARAY J., LIU G., BALANDIN A.A., ABBASCHIAN R., J. Appl. Phys., 108 (2010), 094321.10.1063/1.3498815Search in Google Scholar

[82] SUTTER P.W., FLEGE J.-I., SUTTER E.A., Nat. Mater., 7 (2008), 406.10.1038/nmat216618391956Search in Google Scholar

[83] PLETIKOSIĆ I., KRALJ M., PERVAN P., BRAKO R., CORAUX J., N’DIAYE A., Phys. Rev. Lett., 102 (2009), 056808.10.1103/PhysRevLett.102.05680819257540Search in Google Scholar

[84] WEATHERUP R.S., BAYER B.C., BLUME R., DUCATI C., BAEHTZ C., SCHLÖGL R., Nano Lett., 11 (2011), 4154.10.1021/nl202036y21905732Search in Google Scholar

[85] KIM K.S., ZHAO Y., JANG H., LEE S.Y., KIM J.M., KIM K.S., Nature, 457 (2009), 706.10.1038/nature0771919145232Search in Google Scholar

[86] ZHANG Y., ZHANG L., ZHOU C., Accounts Chem. Res., 46 (2013), 2329.10.1021/ar300203n23480816Search in Google Scholar

[87] BAE S., KIM H., LEE Y., XU X., PARK J.-S., ZHENG Y., Nat. Nanotechnol., 574 (2010), 574.10.1038/nnano.2010.13220562870Search in Google Scholar

[88] RAFIEE J., MI X., GULLAPALLI H., THOMAS A.V., YAVARI F., SHI Y., Nat. Mater., 11 (2012), 217.10.1038/nmat322822266468Search in Google Scholar

[89] LENSKI D.R., FUHRER M.S., J. Appl. Phys., 110 (2011), 013720.10.1063/1.3605545Search in Google Scholar

[90] LI X., CAI W., AN J., KIM S., NAH J., YANG D., Science, 324 (2009), 1312.10.1126/science.117124519423775Search in Google Scholar

[91] LEVENDORF M.P., RUIZ-VARGAS C.S., GARG S., PARK J., Nano Lett., 9 (2009), 4479.10.1021/nl902790r19860406Search in Google Scholar

[92] WASSEI J.K., MECKLENBURG M., TORRES J.A., FOWLER J.D., REGAN B., KANER R.B., Small, 8 (2012), 1415.10.1002/smll.20110227622351509Search in Google Scholar

[93] SUTTER P., Nat. Mater. 8 (2009), 171.10.1038/nmat239219229263Search in Google Scholar

[94] OHTA T., BOSTWICK A., MCCHESNEY J., SEYLLER T., HORN K., ROTENBERG E., Phys. Rev. Lett., 98 (2007), 206802.10.1103/PhysRevLett.98.20680217677726Search in Google Scholar

[95] MOROZOV S., NOVOSELOV K., KATSNELSON M., SCHEDIN F., PONOMARENKO L., JIANG D., Phys.Rev. Lett., 97 (2006), 016801.10.1103/PhysRevLett.97.01680116907394Search in Google Scholar

[96] JOBST J., WALDMANN D., SPECK F., HIRNER R., MAUDE D.K., SEYLLER T., http://arxiv.org/abs/0908.1900,2009.Search in Google Scholar

[97] SHEN T., GU J., XU M., WU Y., BOLEN M., CAPANO M., Appl. Phys. Lett., 95 (2009), 172105.10.1063/1.3254329Search in Google Scholar

[98] WU X., HU Y., RUAN M., MADIOMANANA N.K., HANKINSON J., SPRINKLE M., Appl. Phys. Lett., 95 (2009), 223108.10.1063/1.3266524Search in Google Scholar

[99] ALEXANDER-WEBBER J., BAKER A., JANSSEN T., TZALENCHUK A., LARA-AVILA S., KUBATKIN S., Phys. Rev. Lett., 111 (2013), 096601. 10.1103/PhysRevLett.111.09660124033057Search in Google Scholar

[100] TZALENCHUK A., LARA-AVILA S., KALABOUKHOV A., PAOLILLO S., SYVÄ JÄRVI M., YAKIMOVA R., Nat. Nanotechnol., 5 (2010), 186.10.1038/nnano.2009.47420081845Search in Google Scholar

[101] LARA-AVILA S., KALABOUKHOV A., PAOLILLO S., SYVÄJÄRVI M., YAKIMOVA R., FAL’KO V., arXiv:09091193, 2009.Search in Google Scholar

[102] HASS J., VARCHON F., MILLAN-OTOYA J.-E., SPRINKLE M., SHARMA N., HEER DE W.A., Phys.Rev. Lett., 100 (2008), 125504.10.1103/PhysRevLett.100.12550418517883Search in Google Scholar

[103] LIN Y.-M., DIMITRAKOPOULOS C., JENKINS K.A., FARMER D.B., CHIU H.-Y., GRILL A., Science, 327 (2010), 662.10.1126/science.118428920133565Search in Google Scholar

[104] CHAKRABARTI A., LU J., SKRABUTENAS J.C., XU T., XIAO Z., MAGUIRE J.A., J. Mater. Chem., 21 (2011), 9491.10.1039/c1jm11227aSearch in Google Scholar

[105] BLAKE P., BRIMICOMBE P.D., NAIR R.R., BOOTH T.J., JIANG D., SCHEDIN F., Nano Lett., 8 (2008), 1704.10.1021/nl080649i18444691Search in Google Scholar

[106] EDA G., FANCHINI G., CHHOWALLA M., Nat. Nanotechnol., 3 (2008), 270.10.1038/nnano.2008.8318654522Search in Google Scholar

[107] LI D., MÜLLER M.B., GILJE S., KANER R.B., WALLACE G.G., Nat. Nanotechnol., 3 (2008), 101.10.1038/nnano.2007.45118654470Search in Google Scholar

[108] RAHAMAN M., ISMAIL A.F., MUSTAFA A., Polym.Degrad. Stabil., 92 (2007), 1421.10.1016/j.polymdegradstab.2007.03.023Search in Google Scholar

[109] KO Y.U., CHO S.-R., CHOI K.S., PARK Y., KIM S.T., KIM N.H., J. Mater. Chem., 22 (2012), 3606.10.1039/c2jm15299aSearch in Google Scholar

[110] YAMAGUCHI H., EDA G., MATTEVI C., KIM H., CHHOWALLA M., ACS Nano., 4 (2010), 524.10.1021/nn901496pSearch in Google Scholar

[111] NIKOLAEV P., BRONIKOWSKI M.J., BRADLEY R.K., ROHMUND F., COLBERT D.T., SMITH K., Chem. Phys. Lett., 313 (1999), 91.10.1016/S0009-2614(99)01029-5Search in Google Scholar

[112] LIANG F., SADANA A.K., PEERA A., CHATTOPADHYAY J., GU Z., HAUGE R.H., Nano Lett., 4 (2004), 1257.10.1021/nl049428cSearch in Google Scholar

[113] YAN Z., PENG Z., CASILLAS G., LIN J., XIANG C., ZHOU H., ACS Nano, 8 (2014), 5061.10.1021/nn501132n404677824694285Search in Google Scholar

[114] IRISSOU E., LEGOUX J.-G., RYABININ A., JODOIN B., MOREAU C., J. Therm. Spray Techn., 17 (2008), 495.10.1007/s11666-008-9203-3Search in Google Scholar

[115] WANG X., ZHI L., MÜLLEN K., Nano Lett. 8 (2008), 323.10.1021/nl072838r18069877Search in Google Scholar

[116] LIANG X., CHANG A.S.P., ZHANG Y., HARTENECK B.D., CHOO H., OLYNICK D.L., CABRINI S., Nano Lett., 9 (1) (2009), 467.10.1021/nl803512z19072062Search in Google Scholar

[117] STANKOVICH S., DIKIN D.A., PINER R.D., KOHLHAAS K.A., KLEINHAMMES A., JIA Y., WU Y., NGUYEN S.T., RUOFF R.S., Carbon, 45 (7) (2007), 1558.10.1016/j.carbon.2007.02.034Search in Google Scholar

[118] WATCHAROTONE S., DIKIN D.A., STANKOVICH S., PINER R., JUNG I., DOMMETT G.H.B., EVMENENKO G., WU S.-E., CHEN S.-F., LIU CH.,-P., NGUEN S.T., RUOFF R.S., Nano Lett., 7 (7) (2007), 1888.10.1021/nl070477+17592880Search in Google Scholar

[119] LI Z., WANG J., LIU X., LIU S., OU J., YANG S.,, J.Mater. Chem., 21 (2011), 3397.10.1039/c0jm02650fSearch in Google Scholar

[120] GOMEZ-NAVARRO C., WEITZ R.T., BITTNER A.M., SCOLARI M., MEWS A., BURGHARD M., KERN N., Nano Lett., 7 (11) (2007), 3499. 10.1021/nl072090c17944526Search in Google Scholar

[121] SHEN H., China’s Graphene industry set to skyrocket in 2014, http://investorintel.com/graphite-grapheneintel/chinas-graphene-industry-starts-take-2014/, 2014. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo