1. bookVolume 33 (2015): Issue 2 (June 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Predictive study of structural, electronic, magnetic and thermodynamic properties of XFeO3 (X = Ag, Zr and Ru) multiferroic materials in cubic perovskite structure: first-principles calculations

Published Online: 11 Jul 2015
Volume & Issue: Volume 33 (2015) - Issue 2 (June 2015)
Page range: 402 - 413
Received: 11 Sep 2014
Accepted: 05 Feb 2015
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The full potential linear-muffin-tin-orbital method within the spin local density approximation has been used to study the structural, electronic, magnetic and thermodynamic properties of three multiferroic compounds of XFeO3 type. Large values of bulk modulus for these compounds have been obtained, which demonstrates their hardness. The calculated total and partial density of states of these compounds shows a complex of strong hybridized 3d and 4d states at Fermi level. The two degenerate levels eg and t2g clearly demonstrate the origin of this complex. We have also investigated the effect of pressure, from 0 GPa to 55 GPa, on the magnetic moment per atom and the exchange of magnetic energy between the ferromagnetic and antiferromagnetic states. For more detailed knowledge, we have calculated the thermodynamic properties, and determined heat capacity, Debye temperature, bulk modulus and enthropy at different temperatures and pressures for the three multiferroic compounds. This is the first predictive calculation of all these properties.

Keywords

[1] RAMESH R., SPALDIN N.A., Nat. Mater., 6 (2007), 21.10.1038/nmat180517199122Search in Google Scholar

[2] WANG K.F., LIU J.M., REN. Z.F, Adv.Phys., 58 (2009), 321.10.1080/00018730902920554Search in Google Scholar

[3] EERENSTEIN W., WIORA M., PRIETO J.L., SCOTT J.F., MATHUR N.D., Nat. Mater., 6 (2007), 348.10.1038/nmat188617417643Search in Google Scholar

[4] SPALDIN N.A., CHEONG S.W., RAMESH R., Phys.Today, 63 (2010), 38.10.1063/1.3502547Search in Google Scholar

[5] PICOZZI S., YAMAUCHI K., SANYAL B., SERGIENKO I.A., DAGOTTO E., Phys. Rev. Lett., 99 (2007), 227201.10.1103/PhysRevLett.99.22720118233318Search in Google Scholar

[6] RONDINELLI J.M., STENGEL M., SPALDIN N.A., Nat. Nanotechnol., 3 (2008), 46.10.1038/nnano.2007.41218654450Search in Google Scholar

[7] BAETTIG P., SPALDIN N.A., Appl. Phys. Lett., 86 (2005), 012505.10.1063/1.1843290Search in Google Scholar

[8] FENG H., LIU F., Phys. Lett. A, 372 (2008), 1904.10.1016/j.physleta.2007.10.039Search in Google Scholar

[9] TOKUNAGA Y., IGUCHI S., ARIMA T., TOKURA Y., Phys. Rev. Lett., 101 (2008), 097205.10.1103/PhysRevLett.101.09720518851654Search in Google Scholar

[10] FENNIE C.J., Phys. Rev. Lett., 100 (2008), 167203.10.1103/PhysRevLett.100.16720318518240Search in Google Scholar

[11] VARGA T., KUMAR A., VLAHOS E., DENEV S., PARK M., HONG S., SANEHIRA T., WANG Y., FENNIE C.J., STREIFFER S.K., KE X., SCHIFFER P., GOPALAN V., MITCHELL J.F., Phys. Rev. Lett., 103 (2009), 047601.10.1103/PhysRevLett.103.04760119659401Search in Google Scholar

[12] AIMI A., KATSUMATA T., MORI D., FU D., ITOH M., KYˆOMEN T., HIRAKI K., TAKAHASHI T., INAGUMA Y., Inorg. Chem., 50 (2011), 6392.10.1021/ic201006q21644498Search in Google Scholar

[13] RACHED H., RACHED D., RABAH M., KHENATA R., RESHAK A.H., Physica B, 405 (2010) 3515.10.1016/j.physb.2010.05.060Search in Google Scholar

[14] SAVRASOV S.Y., Phys. Rev. B, 54 (1996), 16470.10.1103/PhysRevB.54.164709985771Search in Google Scholar

[15] SAVRASOV S., SAVRASOV D., Phys. Rev. B, 46 (1992), 12181.10.1103/PhysRevB.46.12181Search in Google Scholar

[16] HOHENBERG P., KOHN W., Phys. Rev. B, 136 (1964), 864.10.1103/PhysRev.136.B864Search in Google Scholar

[17] KOHN W., SHAM L.J., Phys. Rev. A, 140 (1965), 1133.10.1103/PhysRev.140.A1133Search in Google Scholar

[18] PERDEW J.P., WANG Y., Phys. Rev. B, 46 (1992), 12947.10.1103/PhysRevB.46.12947Search in Google Scholar

[19] BLOCHL P., JEPSEN O., ANDERSEN O.K., Phys. Rev. B, 49 (1994), 16223.10.1103/PhysRevB.49.16223Search in Google Scholar

[20] BIRCH F., J. Geophys. Res., 83 (1978), 1257.10.1029/JB083iB03p01257Search in Google Scholar

[21] WOLLAN E.O., KOEHLER W.C., Phys. Rev., 100 (1955), 545.10.1103/PhysRev.100.545Search in Google Scholar

[22] BLANCO M.A., FRANCISCO E., LUA˜N A V., Comput. Phys. Commun., 158 (2004), 57.10.1016/j.comphy.2003.12.001Search in Google Scholar

[23] BLANCO M.A., PENDAS A.M., FRANCISCO E., RECIO J.M., FRANCO R., J. Mol. Struct., 368 (1996), 245.10.1016/S0166-1280(96)90571-0Search in Google Scholar

[24] FLOREZ M., RECIO J.M., FRANCISCO E., BLANCO M.A., PENDAS A.M., Phys. Rev. B, 66 (2002), 144112.10.1103/PhysRevB.66.144112Search in Google Scholar

[25] FAHY S., CHANG K.J., LOUIS S.G., COHEN M.L., Phys. Rev. B, 35 (1989), 7840.Search in Google Scholar

[26] FRANCISCO E., RECIO J.M., BLANCO M.A., PENDAS A.M., J. Phys. Chem., 102 (1998), 1595.10.1021/jp972516jSearch in Google Scholar

[27] FRANCISCO E., BLANCO M.A., SANJURJO G., Phys. Rev. B, 63 (2001), 094107.10.1103/PhysRevB.63.094107Search in Google Scholar

[28] POIRIER J.P., Introduction to the Physics of the Earth’s Interior, Cambridge University Press, Oxford, 2000.Search in Google Scholar

[29] HILL R., Proc. R. Soc. A, 65 (1952), 349. 10.1088/0370-1298/65/5/307Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo