1. bookVolume 33 (2015): Issue 1 (March 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Influence of aluminium concentration in Zn0:9V0:1O nanoparticles on structural and optical properties

Published Online: 13 Mar 2015
Volume & Issue: Volume 33 (2015) - Issue 1 (March 2015)
Page range: 198 - 204
Received: 08 Feb 2014
Accepted: 19 Oct 2014
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The (V,Al) co-doped ZnO nano-structured powders (Zn0.9-xV0.1AlxO, where x = 0.02, 0.03 and 0.04) were synthesized via the sol-gel technique and their structural and optical properties were investigated. The effect of Al concentration on the structural and optical properties of the Zn0.9-xV0.1AlxO nanopowders was studied using various techniques. The XRD patterns indicate that the samples have a polycrystalline wurtzite structure. The crystallite size increases with increasing the Al content and lies in the range of 23 to 30 nm. The lattice strain, estimated by the Stokes-Wilson equation, decreases when Al content increases. SEM and TEM micrographs show that Zn0.9-xV0.1AlxO powders are the agglomeration of nanoparticles having spherical and hexagonal shapes with dimensions ranging from 20 to 30 nm. FT-IR spectra show a distinct absorption peak at about 500 cm-1 for ZnO stretching modes and other peaks related to OH and H2O bands. Raman spectra confirm the wurtzite structure of the Zn0.9-xV0.1AlxO nanoparticles. The direct band gaps of the synthesized Zn0.9-xV0.1AlxO nanopowders, estimated from the Brus equation and the crystallite sizes deduced from XRD, are around 3.308 eV. The decomposition process of the dried gel system was investigated by thermal gravimetric analysis (TGA).

Keywords

[1] TONOOKA K., BANDO H., AIURA Y., Thin Solid Films, 445 (2003), 327.10.1016/S0040-6090(03)01177-5Search in Google Scholar

[2] PARK J.H., JANG S.J., KIM S.S., LEE B.T., Appl. Phys. Lett., 89 (2006), 121108.10.1063/1.2356075Search in Google Scholar

[3] YU Z.G., WU P., GONG H., Appl. Phys. Lett., 88 (2006), 132114.10.1063/1.2192089Search in Google Scholar

[4] JOSPH B., GOPCHANDRAN K.G., THOMAS P.V., KOSHY P., VAIDYAN V.K., Mater. Chem. Phys., 58 (1999), 71.10.1016/S0254-0584(98)00257-0Search in Google Scholar

[5] CHEN J.J., YU M.H., ZHOU W.L., SUN K., WANG L.M., Appl. Phys. Lett., 87 (2005), 173119.10.1063/1.2119415Search in Google Scholar

[6] EL MIR L., GHRIBI F., HAJIRI M., BEN AYADI Z., DJESSAS K., CUBUKCU M., VON BARDELEBEN H.J., Thin Solid Films, 519 (2011), 5787.10.1016/j.tsf.2010.12.198Search in Google Scholar

[7] SAYARI A., EL MIR L., KONA Powder Part. J., 32 (2015), DOI:10.14356/kona.2015003.10.14356/kona.2015003Search in Google Scholar

[8] EL MIR L., BEN AYADI Z., RAHMOUNI H., EL GHOUL J., DJESSAS K., VON BARDELEBEN H.J., Thin Solid Films, 517 (2009), 6007.10.1016/j.tsf.2009.03.197Search in Google Scholar

[9] SRINIVASAN G., RAJENDRA KUMAR R.T., KUMAR J., Opt. Mater., 30 (2007), 314.10.1016/j.optmat.2006.11.075Search in Google Scholar

[10] ARREDONDO E.J.L., MALDONADO A., ASOMOZA R., ACOSTA D.R., LIRA M.A.M., OLVERA L., Thin Solid Films, 490 (2005), 132.10.1016/j.tsf.2005.04.043Search in Google Scholar

[11] YUAN G.D., ZHANG W.J., JIE J.S., FAN X., TANG J.X., LEE C.S., LEE S.T., Adv. Mater., 20 (2008), 168.10.1002/adma.200701377Search in Google Scholar

[12] MINAMI T., Thin Solid Films, 516 (2008), 5822.10.1016/j.tsf.2007.10.063Search in Google Scholar

[13] CHUA B.S., XU S., REN Y.P., CHENG Q.J., OSTRIKOV K., J. Alloy. Compd., 485 (2009), 379.10.1016/j.jallcom.2009.05.099Search in Google Scholar

[14] CHEN M., PEI Z.L., SUN C., GONG J., HUANG R.F., WEN L.S., Mater. Sci. Eng. B-Adv., 85 (2001), 212.10.1016/S0921-5107(01)00584-0Search in Google Scholar

[15] SONG D., ABERLE A.G., XIA J., Appl. Surf. Sci., 195 (2002), 291.10.1016/S0169-4332(02)00611-6Search in Google Scholar

[16] EL GHOUL J., BOUGUILA N., G´OMEZ-LOPERA S.A., EL MIR L., Superlattice. Microst., 64 (2013), 451.10.1016/j.spmi.2013.10.018Search in Google Scholar

[17] WOO L.J., HUI K.N., HUI K.S., CHO Y.R., HWAN C.H., Appl. Surf. Sci., 293 (2014), 55.10.1016/j.apsusc.2013.12.071Search in Google Scholar

[18] SHEN G.Z., CHO J.H., YOO J.K., YI G.C., LEE C.J., J. Phys. Chem. B, 109 (2005), 5491.10.1021/jp045237m16851588Search in Google Scholar

[19] CULLITY B.D., STOCK S.R., Elements of X-ray Diffraction, Prentice Hall, New York, 2001.Search in Google Scholar

[20] BRUS L.E., J. Chem. Phys., 80 (1984), 4403.10.1063/1.447218Search in Google Scholar

[21] STUDENIKIN S.A., GOLEGO N., COCIVERA M., J. Appl. Phys., 84 (1998), 2287.10.1063/1.368295Search in Google Scholar

[22] BARICK K., ASLAM M., DRAVID V., BAHADUR D., J. Phys. Chem. C, 112 (2008), 15163.10.1021/jp802361rSearch in Google Scholar

[23] CALLEJA J.M., CARDONA M., Phys. Rev. B, 16 (1977), 3753.10.1103/PhysRevB.16.3753Search in Google Scholar

[24] DAMEN T.C., PORTO S.P.S., TELL B., Phys. Rev., 142 (1966), 570.10.1103/PhysRev.142.570Search in Google Scholar

[25] CUSCO R., ALARCON-LLADO E., IBANEZ J., ARTUS L., JIMENEZ J., WANG B., CALLAHAN M.J., Phys. Rev. B, 75 (2007), 165202.Search in Google Scholar

[26] CHEN Z.Q., KAWASUSO A., XU Y., NARAMOTO H., YUAN X.L., SEKIGUCHI T., SUZUKI R., OHDAIRA T., Phys. Rev. B, 71 (2005), 115213.10.1103/PhysRevB.71.115213Search in Google Scholar

[27] KASCHNER A., HABOECK U., STRASSBURG M., KACZMARCZYK G., HOFFMANN A., THOMSEN C., ZEUNER A., ALVES H.R., HOFMANN D.M., MEYER B.K., Appl. Phys. Lett., 80 (2002), 1909.10.1063/1.1461903Search in Google Scholar

[28] GUPTA T.K., J. Mater. Res., 7 (1992), 3280.10.1557/JMR.1992.3280Search in Google Scholar

[29] GOSWAMI N., SEN P., Solid State Commun., 132 (2004), 791.10.1016/j.ssc.2004.09.022Search in Google Scholar

[30] BALACHANDRA KUMAR K., RAJI P., Recent Res. Sci. Technol., 3 (2011), 48.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo