Open Access

Nanoindentation Response analysis of Thin Film Substrates-I: Strain Gradient-Divergence Approach


1. Fischer-Cripps, A. (2004). Nanoindentation. New York: Springer-Verlag.10.1007/978-1-4757-5943-3Search in Google Scholar

2. Oyen, M.L., & Cook, R.F. (2009). A practical guide for analysis of nanoindentation data. J. Mech. Behav. Biomed., 2, 396–407.10.1016/j.jmbbm.2008.10.002Search in Google Scholar

3. Guo, Y.B., & Warren, A.W. (2005). Microscale mechanical behavior of the subsurface by finishing processes. J. Manuf. Sci. Eng., 126, 333–338.10.1115/1.1807853Search in Google Scholar

4. Warren, A.W., Guo, Y.B., & Weaver, M.L. (2006). The influence of machining induced residual stress and phase transformation on the measurement of subsurface mechanical behavior using nanoindentation. Surf. Coat. Tech., 200, 3459–3467.10.1016/j.surfcoat.2004.12.028Search in Google Scholar

5. Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., & Schmid, C.F. (2006). Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. USA, 103, 6184–6189.10.1073/pnas.0601744103Search in Google Scholar

6. Sangwal, K. (2000). On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys., 63, 145–152.10.1016/S0254-0584(99)00216-3Search in Google Scholar

7. Kanders, U., Kanders, K., Maniks, J., Mitin, V., Kovalenko, V., Nazarovs, P., & Erts, D. (2015). Nanoindentation response analysis of Cu-rich carbon–copper composite films deposited by PVD technique. Surf. Coat. Tech., 280, 308–316.10.1016/j.surfcoat.2015.08.045Search in Google Scholar

8. Saha, R., & Nix, W.D. (2002). Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater., 50, 23–38.10.1016/S1359-6454(01)00328-7Search in Google Scholar

9. Manika, I., & Maniks, J. (2008). Effect of substrate hardness and film structure on indentation depth criteria for film hardness testing. J. Phys. D. Appl. Phys., 41, 074010.10.1088/0022-3727/41/7/074010Search in Google Scholar

10. Kanders, U., & Kanders, K. (2017). Nanoindentation response analysis of thin film substrates-II: Strain hardening-softening oscillations in subsurface layer. Proc. Latv. Acad. Sci. B, 71.10.1515/lpts-2017-0011Search in Google Scholar

11. Fleck, N., & Hutchinson, J. (1997). Strain gradient plasticity. Adv. Appl. Mech., 33, 295–362.10.1016/S0065-2156(08)70388-0Search in Google Scholar

12. Gao, H., Huang, Y., & Nix, W.D. (1999). Modeling plasticity at the micrometer scale. Naturwissenschaften, 86, 507–515.10.1007/s001140050665Search in Google Scholar

13. Johnson, K.L. (1970). The correlation of indentation experiments. J. Mech. Phys. Solids, 18, 115–126.10.1016/0022-5096(70)90029-3Search in Google Scholar

14. Johnson, K.L. (1985). Contact Mechanics. Cambridge: Cambridge University Press.10.1017/CBO9781139171731Search in Google Scholar

15. Hay, J.L., Agee, P., & Herbert, E.G. (2010). Continuous stiffness measurement during instrumented indentation testing. Exp. Techniques, 34, 86–94.10.1111/j.1747-1567.2010.00618.xSearch in Google Scholar

16. Oliver, W., & Pharr, G. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res., 19, 3–20.10.1557/jmr.2004.19.1.3Search in Google Scholar

17. Zarudi, I., Zhang, L.C., Cheong, W.C.D., & Yu, T.X. (2005). The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters. Acta Mater., 53, 4795–4800.10.1016/j.actamat.2005.06.030Search in Google Scholar

18. Yan, J., Takahashi, H., Gai, X., Harada, H., Tamaki, J., & Kuriyagawa, T. (2006). Load effects on the phase transformation of single-crystal silicon during nanoindentation tests. Mater. Sci. Eng. A, 423, 19–23.10.1016/j.msea.2005.09.120Search in Google Scholar

19. Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., & Embury, J.D. (1998). Structure and mechanical properties of Cu-X (X= Nb, Cr, Ni) nanolayered composites. Scripta Mater., 39, 555–560.10.1016/S1359-6462(98)00196-1Search in Google Scholar

20. Maniks, J., Mitin, V., Kanders, U., Kovalenko, V., Nazarovs, P., Baitimirova, M., Meija, R., Zabels, R., Kundzins, K., & Erts, D. (2015). Deformation behavior and interfacial sliding in carbon/copper nanocomposite films deposited by high power DC magnetron sputtering. Surf. Coat. Tech., 276, 279–285.10.1016/j.surfcoat.2015.07.004Search in Google Scholar

Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics