Open Access

Microstructural strength of tidal soils – a rheometric approach to develop pedotransfer functions


Cite

Ad-Hoc-Arbeitsgruppe Boden, 2005. Bodenkundliche Kartieranleitung. E. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart.Search in Google Scholar

Ajayi Ayodele, E., Horn, R., 2016. Comparing the potentials of clay and biochar in improving water retention and mechanical resilience of sandy soil. Int. Agrophys., 30, 391-399.10.1515/intag-2016-0009Search in Google Scholar

Al-Shayea, N.A., 2001. The combined effect of clay and moisture content on the behavior of remolded unsaturated soils. Eng. Geol., 62, 319-342.10.1016/S0013-7952(01)00032-1Open DOISearch in Google Scholar

Armstrong, A.S.B., Tanton, T.W., 1992. Gypsum applications to aggregated saline sodic clay topsoils. J. Soil Sci., 43, 2, 249-260.10.1111/j.1365-2389.1992.tb00133.xOpen DOISearch in Google Scholar

Baldock, J.A., Aoyama, M., Oades, J.M., Susanto, Grant, C.D., 1994. Structural amelioration of a South Australian redbrown earth using calcium and organic amendments. Aust. J. Soil Res., 32, 3, 571-594.10.1071/SR9940571Open DOISearch in Google Scholar

Baumgarten, W., 2013. Soil microstructural stability as influenced by physicochemical parameters and its environmental relevance on multiple scales. Habilitation Thesis, Christian-Albrechts-Universität Kiel.Search in Google Scholar

Baumgarten, W., Dörner, J., Horn, R., 2013. Microstructural development in volcanic ash soils from South Chile. Soil Tillage Res., 129, 48-60.10.1016/j.still.2013.01.007Search in Google Scholar

Baumgarten, W., Neugebauer, T., Fuchs, E., Horn, R., 2012. Structural stability of Marshland soils of the riparian zone of the Tidal Elbe River. Soil Tillage Res., 125, 80-88.10.1016/j.still.2012.06.002Search in Google Scholar

Bergemann, M., 1995. Die Lage der oberen Brackwassergrenze im Elbeästuar. Deutsche Gewässerkundliche Mitteilungen, 39, 4-5, 134-137.Search in Google Scholar

Blume, H.-P., Stahr, K., Leinweber, P., 2011. Bodenkundliches Praktikum. Eine Einführung in pedologisches Arbeiten für Ökologen, insbesondere Land- und Forstwirte, und für Geowissenschaftler. Spektrum Akademischer Verlag, Heidelberg.Search in Google Scholar

Brandenburg, U., Lagaly, G., 1988. Rheological properties of sodium montmorillonite dispersions. Appl. Clay Sci., 3, 3, 263-279.10.1016/0169-1317(88)90033-6Open DOISearch in Google Scholar

Bronick, C.J., Lal, R., 2005. Soil structure and management: a review. Geoderma, 124, 1-2, 3-22.10.1016/j.geoderma.2004.03.005Search in Google Scholar

Carotenuto, C., Merola, M.C., Álvarez-Romero, M., Coppola, E. Minale, M., 2015. Rheology of natural slurries involved in a rapid mudflow with different soil organic carbon content. Colloid Surface A, 466, 57-65.10.1016/j.colsurfa.2014.10.037Search in Google Scholar

Chan, K.Y., Conyers, M.K., Scott, B.J., 2007. Improved structural stability of an acidic hardsetting soil attributable to lime application. Commun Soil Sci. Plan., 38, 15-16, 2163-2175.10.1080/00103620701549108Open DOISearch in Google Scholar

Chenu, C., Le Bissonnais, Y., Arrouays, D., 2000. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J., 64, 4, 1479-1486.10.2136/sssaj2000.6441479xOpen DOISearch in Google Scholar

Cho, G.C., Dodds, J., Santamarina, J.C., 2006. Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands. Journal of Geotechnical and Geoenvironmental Engineering, 132, 5, 591-602. 10.1061/(ASCE)1090-0241(2006)132:5(591)Search in Google Scholar

Çokça, E., Tilgen, H.P., 2010. Shear strength-suction relationship of compacted Ankara clay. Appl. Clay Sci., 49, 4, 400-404.10.1016/j.clay.2009.08.028Open DOISearch in Google Scholar

Czibulya, Z., Szegi, T., Michéli, E., Tombácz, E., 2014. Rheological measurements for indicating structural changes in selected soil catenas of European experimental fields. Int. J. Agric. Sci. Technol., 2, 1, 22-31.10.14355/ijast.2014.0301.04Search in Google Scholar

De Gryze, S., Six, J., Brits, C., Merckx, R., 2005. A quantification of short-term macroaggregate dynamics: influences of wheat residue input and texture. Soil Biol. Biochem., 37, 1, 55-66.10.1016/j.soilbio.2004.07.024Open DOISearch in Google Scholar

Denef, K., Six, J., Merckx, R., Paustian, K., 2002. Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy. Plant Soil, 246, 2, 185-200.10.1023/A:1020668013524Search in Google Scholar

Dolinar, B., Trauner, L., 2007. The impact of structure on the undrained shear strength of cohesive soils. Eng. Geol., 92, 1-2, 88-96. 10.1016/j.enggeo.2007.04.003Search in Google Scholar

Freitag, C., Hochfeld, B., Ohle, N., 2007. Lebensraum Tiedeelbe. Coastline Reports, 9, 69-79.Search in Google Scholar

Gallipoli, D., Gens, A., Sharma, R., Vaunat, J., 2003. An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour. Geotechnique, 53, 9, 844-844.10.1680/geot.2003.53.1.123Open DOISearch in Google Scholar

Garniel, A., Mierwald, U., 1996. Changes in the morphology and vegetation along the human-altered shoreline of the Lower Elbe. In: Nordstrom, K.F., Roman, C.T. (Eds.): Estuarine Shores: Evolution, Environments and Human Alterations. John Wiley & Sons Ltd., New York, USA, pp. 375-396.Search in Google Scholar

Ghezzehei, T.A., Or, D., 2001. Rheological properties of wet soils and clays under steady and oscillatory stresses. Soil Sci. Soc. Am. J., 65, 3, 624-637.10.2136/sssaj2001.653624xOpen DOISearch in Google Scholar

Goebel, M.O., Bachmann, J., Woche, S.K., Fischer, W.R., 2005. Soil wettability, aggregate stability, and the decomposition of soil organic matter. Geoderma, 128, 1-2, 80-93.10.1016/j.geoderma.2004.12.016Search in Google Scholar

Hartge, K.H., Horn, R., 2016. Essential Soil Physics. An Introduction to Soil Processes, Functions, Structure and Mechanics. Schweizerbart, Stuttgard, 389 p.Search in Google Scholar

Holthusen, D., 2010. Fertilization induced changes in soil stability at the microscale revealed by rheometry. Dissertation Thesis. Christian-Albrechts-Universität Kiel.Search in Google Scholar

Holthusen, D., Peth, S., Horn, R., 2010. Impact of potassium concentration and matric potential on soil stability derived from rheological parameters. Soil Tillage Res., 111, 1, 75-85.10.1016/j.still.2010.08.002Search in Google Scholar

Holthusen, D., Jänicke, M., Peth, S., Horn, R., 2012a. Physical properties of a Luvisol for different long-term fertilization treatments II. Microscale behavior and its relation to the mesoscale. J. Plant Nutr. Soil Sci., 175, 1, 14-23.10.1002/jpln.201100076Search in Google Scholar

Holthusen, D., Peth, S., Horn, R., Kuhn, T., 2012b. Flow and deformation behavior at the microscale of soils from several long-term potassium fertilization trials in Germany. J. Plant Nutr. Soil Sci., 175, 4, 535-547.10.1002/jpln.201100073Search in Google Scholar

Holthusen, D., Reeb, D., Horn, R., 2012c. Influence of potassium fertilization, water and salt stress, and their interference on rheological soil parameters in planted containers. Soil Tillage Res., 125, 72-79.10.1016/j.still.2012.05.003Search in Google Scholar

Horn, R., 1990. Aggregate characterization as compared to soil bulk properties. Soil Tillage Res., 17, 3-4, 265-289.10.1016/0167-1987(90)90041-BSearch in Google Scholar

Hoyos, L.R., Velosa, C.L., Puppala, A.J., 2014. Residual shear strength of unsaturated soils via suction-controlled ring shear testing. Eng. Geol., 172, 1-11.10.1016/j.enggeo.2014.01.001Search in Google Scholar

Israelachvili, J.N., Mcguiggan, P.M., Homola, A.M., 1988. Dynamic properties of molecularly thin liquid-films. Science, 240, 4849, 189-191.10.1126/science.240.4849.18917800916Search in Google Scholar

Jasmund, K., Lagaly, G., 1993. Tonminerale und Tone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt. Steinkopff Verlag, Darmstadt.10.1007/978-3-642-72488-6Search in Google Scholar

Jeong, S.W., Locat, J., Leroueil, S., Malet, J.P., 2010. Rheological properties of fine-grained sediment: the roles of texture and mineralogy. Canadian Geotechnical Journal, 47, 10, 1085-1100. 10.1139/T10-012Search in Google Scholar

Kézdi, Á., 1974. Handbook of Soil Mechanics, Vol. 1: Soil Physics. Elsevier, Amsterdam.Search in Google Scholar

Laird, N.M., Ware, J.H., 1982. Random-effects models for longitudinal data. Biometrics, 38, 4, 963-974.10.2307/2529876Open DOISearch in Google Scholar

Li, Y.R., Aydin, A., Xu, Q., Chen, J., 2012. Constitutive behavior of binary mixtures of kaolin and glass beads in direct shear. KSCE J. Civ. Eng., 16, 7, 1152-1159.10.1007/s12205-012-1613-6Search in Google Scholar

Majzik, A., Tombácz, E., 2007. Interaction between humic acid and montmorillonite in the presence of calcium ions I. Interfacial and aqueous phase equilibria: Adsorption and complexation. Org Geochem, 38, 8, 1319-1329.10.1016/j.orggeochem.2007.04.003Search in Google Scholar

Markgraf, W., 2006. Microstructural changes in soils. rheological investigations in soil mechanics. Dissertation Thesis. Christian-Albrechts-Universität Kiel.Search in Google Scholar

Markgraf, W., Horn, R., 2006. Rheological-stiffness analysis of K+-treated and CaCO3-rich soils. J. Plant Nutr. Soil. Sci., 169, 3, 411-419.10.1002/jpln.200521934Search in Google Scholar

Markgraf, W., Horn, R., 2007. Scanning electron microscopyenergy dispersive scan analyses and rheological investigations of south-Brazilian soils. Soil Sci. Soc. Am. J., 71, 3, 851-859.10.2136/sssaj2006.0231Search in Google Scholar

Markgraf, W., Horn, R., 2009. Rheological investigations in soil micro mechanics: Measuring stiffness degradation and structural stability on a particle scale. In: Gragg, L.P., Cassell, J.M. (Eds.): Progress in Management Engineering. Nova Science Publishers, Inc., New York, pp. 237-279. Search in Google Scholar

Markgraf, W., Horn, R., Peth, S., 2006. An approach to rheometry in soil mechanics - Structural changes in bentonite, clayey and silty soils. Soil Till. Res., 91, 1-2, 1-14.10.1016/j.still.2006.01.007Search in Google Scholar

Markgraf, W., Moreno, F., Horn, R., 2012a. Quantification of microstructural changes in Salorthidic Fluvaquents using rheological and particle charge techniques. Vadose Zone J., 11, 1. DOI:10.2136/vzj2011.0061.10.2136/vzj2011.0061Open DOISearch in Google Scholar

Markgraf, W., Watts, C.W., Whalley, W.R., Hrkac, T., Horn, R., 2012b. Influence of organic matter on rheological properties of soil. Appl. Clay Sci., 64, 25-33.10.1016/j.clay.2011.04.009Open DOISearch in Google Scholar

Mehra, O.P., Jackson, M.L., 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner., 7, 317-327.10.1346/CCMN.1958.0070122Search in Google Scholar

Mezger, T.G., 2014. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers. Vincentz Network, Hannover, Germany.Search in Google Scholar

Oades, J.M., 1984. Soil organic-matter and structural stability - Mechanisms and implications for management. Plant Soil, 76, 1-3, 319-337.10.1007/BF02205590Search in Google Scholar

Osipov, V.I., 2014. Physicochemical theory of effective stresses in soils. Water Resources, 41, 7, 801-818.10.1134/S0097807814070094Open DOISearch in Google Scholar

Paradelo, R., van Oort, F., Chenu, C., 2013. Water-dispersible clay in bare fallow soils after 80 years of continuous fertilizer addition. Geoderma, 200, 40-44.10.1016/j.geoderma.2013.01.014Search in Google Scholar

Pértile, P., Reichert, J.M., Gubiani, P.I., Holthusen, D., Costa, A.d., 2016. Rheological parameters as affected by water tension in subtropical soils. Rev. Bras. Cienc. Solo, 40, e0150286.10.1590/18069657rbcs20150286Search in Google Scholar

Peth, S., Rostek, J., Zink, A., Mordhorst, A., Horn, R., 2010. Soil testing of dynamic deformation processes of arable soils. Soil Tillage Res., 106, 2, 317-328.10.1016/j.still.2009.10.007Search in Google Scholar

Pronk, G.J., Heister, K., Kogel-Knabner, I., 2011. Iron oxides as major available interface component in loamy arable topsoils. Soil Sci. Soc. Am. J., 75, 6, 2158-2168. 10.2136/sssaj2010.0455Open DOISearch in Google Scholar

R Developement Core Team, 2013. R: A language and environment for statistical computing.Search in Google Scholar

Rengasamy, P., Olsson, K.A., 1991. Sodicity and soil structure. Aust. J. Soil Res., 29, 6, 935-952.10.1071/SR9910935Open DOISearch in Google Scholar

Santamarina, J.C., 2001. Soil behavior at the microscale: Particle forces. In: Proceedings of the Symposium of Soil Behavior and Soft Ground Construction, in honor of Charles C. Ladd. MIT, pp. 1-32.Search in Google Scholar

Santamarina, J.C., Shin, H., 2009. Friction in granular media. In: Hatzor, Y.H., Sulem, J., Vardoulakis, I. (Eds.): Meso-Scale Shear Physics in Earthquake and Landslide Mechanics. CRC Press, Boca Raton, London.10.1201/b10826-20Search in Google Scholar

Schlichting, E., Blume, H.-P., Stahr, K., 1995. Bodenkundliches Praktikum. Eine Einführung in und Forstwirte und für Geowissenschaftler. Blackwell Wissenschafts-Verlag, Berlin, Wien.Search in Google Scholar

Schwertmann, U., Niederbudde, E.-A., 1993. Tonminerale in Böden. In: Jasmund, K., Lagaly, G. (Eds.): Tonminerale und Tone. Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt. Steinkopff Verlag, Darmstadt, pp. 212-265.10.1007/978-3-642-72488-6_6Search in Google Scholar

Six, J., Feller, C., Denef, K., Ogle, S.M., Sa, J.C.D., Albrecht, A., 2002. Soil organic matter, biota and aggregation in temperate and tropical soils - Effects of no-tillage. Agronomie, 22, 7-8, 755-775.10.1051/agro:2002043Open DOISearch in Google Scholar

Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res., 79, 1, 7-31.10.1016/j.still.2004.03.008Search in Google Scholar

Smith, D.W., Reitsma, M.G., 2002. Towards an explanation for the residual friction angle in montmorillonite clay soils. In: Vulliet, L., Laloui, L., Schrefler, B. (Eds.): Environmental Geomechanics. EPFL/ Centre Midi, Lausanne, Schweiz, pp. 27-44.Search in Google Scholar

Stoppe, N., Horn, R., 2017. How far are rheological parameters from amplitude sweep tests predictable using common physicochemical soil properties? IOP Conference Series: Journal of Physics: Conference Series, 790(1)012032.10.1088/1742-6596/790/1/012032Search in Google Scholar

Sumner, M.E., Naidu, R., 1998. Sodic Soils: Distribution, Properties, Management and Environmental Consequences. Oxford University Press Inc., New York.Search in Google Scholar

Tisdall, J.M., Oades, J.M., 1982. Organic matter and waterstable aggregates in soils. J. Soil Sci., 33, 2, 141-163.10.1111/j.1365-2389.1982.tb01755.xOpen DOISearch in Google Scholar

Torrance, J.K., 1999. Physical, chemical and mineralogical influences on the rheology of remoulded low-activity sensitive marine clay. Appl. Clay Sci., 14, 4, 199-223.10.1016/S0169-1317(98)00057-XOpen DOISearch in Google Scholar

Vallejo, L.E., Mawby, R., 2000. Porosity influence on the shear strength of granular material-clay mixtures. Eng. Geol., 58, 2, 125-136.10.1016/S0013-7952(00)00051-XOpen DOISearch in Google Scholar

Verbeke, G., Molenberghs, G., 2008. Linear Mixed Models for Longitudinal Data. Springer Verlag, New York.Search in Google Scholar

Warkentin, B.R., 2008. Soil structure: A history from tilth to habitat. Adv. Agron., 97, 239-272.10.1016/S0065-2113(07)00006-5Search in Google Scholar

Wuddivira, M.N., Camps-Roach, G., 2007. Effects of organic matter and calcium on soil structural stability. Eur. J. Soil Sci., 58, 3, 722-727.10.1111/j.1365-2389.2006.00861.xSearch in Google Scholar

Zhang, X.C., Norton, L.D., 2002. Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils. J. Hydrol., 260, 194-205.10.1016/S0022-1694(01)00612-6Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other