Open Access

Modelling free surface flow with curvilinear streamlines by a non-hydrostatic model


Cite

Abramowitz, M., Stegun, I.A., 1972. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. 10th edition, Wiley, New York, NY.Search in Google Scholar

Anh, T.N., Hosoda, T., 2007. Depth-averaged model of openchannel flows over an arbitrary 3-D surface and its applications to analysis of water surface profile. J. Hydr. Engrg., 133, 4, 350-360.10.1061/(ASCE)0733-9429(2007)133:4(350)Search in Google Scholar

Berger, R.C., Carey, G.F., 1998. Free-surface flow over curved surfaces-Part I: Perturbation analysis. Int. J. Numer. Meth. Fluids, 28, 2, 191-200.10.1002/(SICI)1097-0363(19980815)28:2<191::AID-FLD705>3.0.CO;2-NSearch in Google Scholar

Blom, P., Booij, R., 1995. Turbulent free-surface flow over sills. J. Hydr. Res., 33, 5, 663-682.10.1080/00221689509498563Search in Google Scholar

Castro-Orgaz, O., Hager, W.H., 2009. Curved-streamline transitional flow from mild to steep slopes. J. Hydr. Res., 47, 5, 574-584.10.3826/jhr.2009.3656Search in Google Scholar

Castro-Orgaz, O., Chanson, H., 2011. Near-critical free-surface flows: real fluid flow analysis. Environ. Fluid Mech., 11, 5, 499-516.10.1007/s10652-010-9192-xSearch in Google Scholar

Castro-Orgaz, O., 2013. Potential flow solution for open channel flows and weir crest overflows. J. Irrig. Drain. Engrg., 139, 7, 551-559.10.1061/(ASCE)IR.1943-4774.0000580Search in Google Scholar

Castro-Orgaz, O., Hager, W.H., 2013. Velocity profile approximations for two-dimensional potential open channel flow. J. Hydr. Res., 51, 6, 645-655.10.1080/00221686.2013.809387Search in Google Scholar

Castro-Orgaz, O., Chanson, H., 2014. Depth-averaged specific energy in open-channel flow and analytical solution for critical irrotational flow over weirs. J. Irrig. Drain. Engrg., 140, 1, 10.1061/(ASCE)IR.1943-4774.0000666.10.1061/(ASCE)IR.1943-4774.0000666Search in Google Scholar

Castro-Orgaz, O., Hager, W.H., 2014. One-dimensional modelling of curvilinear free surface flow: generalised Matthew theory. J. Hydr. Res., 52, 1, 14-23.10.1080/00221686.2013.834853Search in Google Scholar

Chaudhry, M.H., 2008. Open Channel Flow. 2nd edition, Springer Science and Business Media LLC, New York, NY.Search in Google Scholar

Dewals, B.J., Erpicum, S., Archambeau, P., Detrembleur, S., Pirotton, M., 2006. Depth-integrated flow modelling taking into account bottom curvature, J. Hydr. Res., 44, 6, 787-795.10.1080/00221686.2006.9521729Search in Google Scholar

Dressler, R.F., 1978. New nonlinear shallow flow equations with curvature. J. Hydr. Res., 16, 3, 205-220.10.1080/00221687809499617Search in Google Scholar

Ehrenberger, R., 1929. Versuche über die verteilung der drücke an wehrrücken infolge des abstürzcnden wassers. [Experiments on the distribution of pressures along the face of weirs resulting from the impact of the falling water]. Die Wasserwirtschaft, Vienna, 22, 5, 65-72. (In German.)Search in Google Scholar

Fenton, J.D., 1996. Channel flow over curved boundaries and a new hydraulic theory. In: Proc. 10th Congress, APD-IAHR, Langkawi, Malaysia, August 26-29, 2, 266-273.Search in Google Scholar

Ferziger, J.H., Peric, M., 2002. Computational Methods for Fluid Dynamics. 3rd revised edition, Springer-Verlag Berlin Heidelberg, New York, NY.Search in Google Scholar

Fuhrman, D.H., Bingham, H.B., Madsen, P.A., 2005. Nonlinear wave structure interactions with high order Boussinesq model. Coast. Engrg., 52, 8, 655-672.10.1016/j.coastaleng.2005.03.001Search in Google Scholar

Ghamry, H.K., Steffler, P.M., 2002. Effect of applying different distribution shapes for velocities and pressure on simulation of curved open channels. J. Hydr. Engrg., 128, 11, 969-982.10.1061/(ASCE)0733-9429(2002)128:11(969)Search in Google Scholar

Haaland, S.E., 1983. Simple and explicit formulas for the friction factor in turbulent pipe flow. J. Fluids Engrg., 105, 1, 89-90.10.1115/1.3240948Search in Google Scholar

Khan, A.A., Steffler, P.M., 1996. Modelling overfalls using vertically averaged and moment equations. J. Hydr. Engrg., 122, 7, 397-402.10.1061/(ASCE)0733-9429(1996)122:7(397)Search in Google Scholar

Liang, D., Lin, B., Falconer, R.A., 2007. Simulation of rapidly varying flow using an efficient TVD-MacCormack scheme. Int. J. Numer. Meth. Fluids, 53, 5, 811-826.10.1002/fld.1305Search in Google Scholar

Matthew, G.D. 1991. Higher order, one-dimensional equations of potential flow in open channels. Proc. Instn. Civ. Eng., London, England, 91, 3, 187-201.Search in Google Scholar

Montes, J.S., 1994. Potential flow solution to 2-D transition from mild to steep slope. J. Hydr. Engrg., 120, 5, 601-621.10.1061/(ASCE)0733-9429(1994)120:5(601)Search in Google Scholar

Serre, F., 1953. Contribution à l’étude des écoulements permanents et variables dans les canaux [Contribution to the study of steady and unsteady channel flows]. La Houille Blanche, 8, 6-7, 374-388. (In French.)10.1051/lhb/1953034Search in Google Scholar

Steffler, P.M., Jin, Y., 1993. Depth averaged and moment equations for moderately shallow free surface flow. J. Hydr. Res., 31, 1, 5-17.10.1080/00221689309498856Search in Google Scholar

U. S. Bureau of Reclamation, 1948. Studies of crests for overfall dams. Hydraulic Investigations, Bulletin 3, Part VI, Boulder Canyon Project Final Reports, Denver, Colo.Search in Google Scholar

White, F.M., 2003. Fluid Mechanics. 5th edition, McGraw-Hill, New York, NY.Search in Google Scholar

Xia, C., Jin, Y., 2006. Multilayer averaged and moment equations for one-dimensional open-channel flows. J. Hydr. Engrg., 132, 8, 839-849.10.1061/(ASCE)0733-9429(2006)132:8(839)Search in Google Scholar

Zerihun, Y.T., 2004. A one-dimensional Boussinesq-type momentum model for steady rapidly varied open channel flows. Ph.D. Thesis, Department of Civil and Environmental Engineering, The University of Melbourne, Australia.Search in Google Scholar

Zerihun, Y.T., Fenton, J.D., 2006. One-dimensional simulation model for steady transcritical free surface flows at short length transitions. Adv. Water Resour., 29, 11, 1598-1607.10.1016/j.advwatres.2005.11.011Search in Google Scholar

Zobeyer, H., Steffler, P.M., 2012. Modelling plane openchannel flows by coupled depth-averaged and RANS equations. J. Hydr. Res., 50, 1, 82-88.10.1080/00221686.2011.636636Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other