1. bookVolume 46 (2019): Issue 1 (January 2019)
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
access type Open Access

Cadomian protolith ages of exotic mega blocks from Bugaj and Andrychów (Western outer Carpathians, Poland) and their palaeogeographic significance

Published Online: 22 Feb 2019
Volume & Issue: Volume 46 (2019) - Issue 1 (January 2019)
Page range: 25 - 36
Received: 09 Apr 2018
Accepted: 14 Jan 2019
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
Abstract

This study presents the first zircon U-Pb LA-MC-ICP-MS ages and whole-rock Rb/Sr and Sm/Nd data from exotic blocks (Bugaj and Andrychów) from the Western Outer Carpathians (WOC) flysch. The CL images of the zircon crystals from both samples reveal typical magmatic textures characterized by a well-defined concentric and oscillatory growth zoning. A concordia age 580.1 ± 6.0 Ma of the zircons from the Bugaj sample is considered to represent the crystallization age of this granite. The zircon crystals from the Andrychów orthogneiss yield an age of 542 ± 21 Ma, interpreted as the uppermost Proterozoic, magmatic crystallization age of the granitoid protholith. The initial (at ca. 580 Ma) 87Sr/86Sr ratios of the Bugaj granitoids (0.72997 and 0.72874) are highly radiogenic, pointing to the assimilation of an older, possibly strongly Rb enriched source to the Bugaj melt. The Nd isotope systematics (εNd580 –1.4 and 0.4) also point to a significant contribution of such a distinct mantle source. On the basis of the sequence of magmatic events obtained from U-Pb zircon ages, we suggest that exotic mega blocks deposited to the WOC basins were related to the Brunovistulicum Terrane. They belong to the group of Vendian/Cambrian granitoids representing the latest, posttectonic expression of the Cadomian cycle.

Keywords

Introduction

Despite the long period of research conducted in the Western Outer Carpathians (WOC) the genesis and tectonic evolution of their crystalline basement is still poorly recognized (e.g. Żelaźniewicz et al., 2009; Buła et al., 2015). At present the crystalline basement is hidden below thick Upper Jurassic-Neogene flysch deposits of the WOC proper (e.g. Książkiewicz, 1977; Oszczypko and Ślączka, 1985; Golonka et al., 2009). Fragments of crystalline rocks, so-called exotics (e.g. Burtanówna et al., 1937; Wieser, 1948), interpreted to be derived from uplifted ridges (cordilleras, Książkiewicz, 1953) and transported by turbidity currents and debris flows into the adjoining flysch basins, offer the opportunity to investigate the geotectonic history of these no longer existing provenance areas of the Carpathian flysch (e.g. Wieser, 1949, 1985; Książkiewicz, 1965; Oszczypko, 1975; Malik, 1978; Oszczypko et al., 2016).

A number of studies concerning the palaeogeography of the WOC have used a range of geochronological methods including K-Ar mica dating (Poprawa et al., 2004, 2005, 2006; Haber and Hałas, 2001), Th-U-total Pb monazite dating (Hanžl et al., 2000; Budzyń et al., 2008; Salata and Oszczypko, 2010; Oszczypko et al., 2016) and U-Pb zircon geochronology (Michalik et al., 2006; Poprawa et al., 2006; Budzyń et al., 2011) to constrain the timing of magmatic and metamorphic processes recorded in the exotics. The general outcome of these investigations is that numerous exclusively pre-Alpine, in parts pre-Variscan ages were determined, but no obvious correlation of stratigraphic and tectonic position and/or geography emerged. From a methodological point of view this is due to the fact that especially K-Ar mica ages are sensitive to thermal and metasomatic overprint thus obscuring any primary geochronological signal directly dating igneous or metamorphic events. This published radiometric age data set is therefore not conclusive for the unambiguous identification of protolith and metamorphic ages.

The main purpose of our study is to present and discuss zircon U-Pb ages from two exotic mega blocks (a granite from Bugaj and an orthogneiss from Andrychów), representing the alimentary crystalline basement area of the WOC flysch. Due to the size of these two exotics (> 100 m) it can safely be assumed that their loci of deposition is far more proximal to their respective shedding ridge(s) than the probably more distally derived pebbles dated in previous studies. Additionally, the latter might easily be re-sedimented making any palaeogeographic implications drawn from ages derived from such rocks severely ambiguous. The presented results provide new information to the ongoing discussion of the late Neoproterozoic palaeogeography of tectonic units which intervene between the East European Craton (Baltica) and the lithotectonic units of the Variscan orogeny (e.g. Belka et al., 2000; Nawrocki et al., 2004; Żelaźniewicz et al., 2009; Buła et al., 2015).

Geological background

The Western Carpathian Mountains are subdivided into the Inner Carpathians, consisting of pre-Alpine crystalline basement units covered by Late Paleozoic to mid-Cretaceous sediments (e.g. Oszczypko, 2004; Poprawa and Malata, 2006) and the Outer Carpathians, separated by the narrow, strongly tectonized Pieniny Klippen Belt (Fig. 1). The WOC are depicted as a complex nappe structure consisting of Upper Jurassic to Neogene flysch deposits, that were folded and thrusted onto the pre-Alpine European foreland during the upper Oligocene to the middle Miocene (e.g. Oszczypko, 1998, 2004; Oszczypko and Oszczypko-Clowes, 2003; Golonka et al., 2005; 2009; Oszczypko et al., 2006, Ślączka et al., 2006).

Fig. 1

Simplified geological map of the Polish part of the Western Carpathians (after Żelaźniewicz el al., 2011, modified) with the location of the investigated samples (shown as yellow dots).

The crystalline basement constituting the pre-Alpine foreland (known only from boreholes) is divided into two basement blocks: the Upper Silesia Block (the northern part of the Brunovistulicum Terrane) to the West and the Małopolska Block to the East (Dudek, 1980; Buła, 2000; Finger et al., 2000; Żelaźniewicz et al., 2009; Buła et al., 2015). The Precambrian basement of the Upper Silesia Block is represented by a) Neoproterozoic (660–556 Ma) metamorphic and igneous rocks, b) Ediacaran anchimetamorphic flysch-type siliciclastics and c) Paleoproterozoic (2.0 Ga) metamorphic rocks with Archean (2.7 Ga) inheritance (Buła et al. 2015). The Neoproterozoic rocks of Małopolska Block are mainly represented by flysch-type series (Żelaźniewicz et al., 2009).

In the WOC several flysch basins were identified on the basis of lithostratigraphy (from south to north), i.e. the Magura, Silesian, Sub-Silesian and Skole basins (e.g. Bieda et al., 1963; Książkiewicz, 1972; Cieszkowski et al., 1985; Oszczypko, 2006). The basins were supplied with sediments from continental margins as well as from the inter-basinal elevations (ridges) separating subbasins (e.g., Książkiewicz, 1962, 1965; Unrug, 1963, 1968; Ślączka, 1986; Olszewska and Wieczorek, 2001; Poprawa et al., 2002, 2004; Golonka et al., 2008). Based on studies of palaeotransport directions it was concluded that the Brunovistulicum and/or Małopolska Terranes (external to the WOC) and the inter-basinal Silesian Ridge were the most prominent source areas of the terrigenous material (e.g. Wieser, 1949, 1985; Książkiewicz, 1965; Sikora, 1976). The Silesian Ridge developed at the boundary between Variscan and Cadomian crustal blocks of the so-called North European platform (e.g. Golonka et al., 2005; Budzyń et al., 2011). The less prominent Andrychów Ridge, recognized in the Polish WOC emerged between the Silesian and Subsilesian-Skole basins (e.g. Książkiewicz, 1960, 1977; Golonka et al., 2005) to the NNE of the Silesian Ridge. This unit is represented by several huge (> 100 m) exotic blocks, containing granitegneiss or mylonitized rocks of unknown age and Jurassic, Cretaceous and Paleogene limestones (Olszewska and Wieczorek, 2001; Ślączka et al., 2006).

Sampling and analytical techniques

Three samples of crystalline rocks (Bu1, Bu2 and An) from exotic mega blocks (Bugaj and Andrychów) were investigated. These blocks, located on the boundary between the Silesian and Subsilesian units, are interpreted as olistoliths of the Silesian nappe (Ślączka and Kaminski, 1998; Golonka et al., 2005; Cieszkowski et al., 2009, 2012). The samples Bu1 and Bu2 were collected in the western flow of the Cedron stream in Bugaj near Kalwaria Zebrzydowska (coordinates: 49°50’56.40”N 19°40’40.70”E; Fig. 1). The sample An, representative for the metamorphic basement rocks of the Andrychów Ridge was collected from Pańska Góra Hill, SE of Andrychów (coordinates: 49°51’10.17”N 19°21’28.95”E, Fig. 1). The two samples Bu1 and An, weighting about 25 kg each, were selected for U-Pb dating.

Whole-rock and mineral analysis

Whole-rock samples were analysed by X-ray fluorescence (XRF) for major and large ion lithophile trace Elements (LILE) and by fusion and ICP-MS for high field strength elements (HFSE) and rare earth elements (REE) in the Bureau Veritas Minerals (Canada). Preparation involved lithium borate fusion and dilute digestions for XRF and lithium borate decomposition or aqua regia digestion for ICP-MS. LOI was determined at 1000°C. REE were normalized to C1 chondrite (Sun and McDonough, 1989).

Microprobe analyses of rock-forming and accessory minerals were undertaken in the Inter-Institutional Laboratory of Microanalyses of Minerals and Synthetic Substances, Warsaw, using a Cameca SX 100 electron microprobe operating in the wavelength-dispersive spectroscopic (WDS) mode with the following conditions: 15 kV accelerating voltage, 20 nA beam current, 1–5 μm beam diameter, peak count-time of 20 s and background count-time of 10 s.

Rb-Sr and Sm-Nd whole rock isotope analysis

The Rb-Sr and Sm-Nd analytical work was performed at the Laboratory of Geochronology, Department of Lithospheric Research, University of Vienna. Rb, Sr, Sm and Nd concentrations were determined from two different sample aliquots by isotope dilution (ID) using 87Rb-84Sr and 147Sm-150Nd spikes. Rb, Sm and Nd ID samples were measured as metals from a Re (single: Rb; double: Nd and Sm) filament using a Finnigan™ MAT262 mass spectrometer, while Sr ID and isotope composition (IC) and Nd IC samples were run on a ThermoFinnigan™ Triton TI TIMS machine. Maximum total procedural blanks were < 1 ng for Sr and 50 pg for Nd and were taken as negligible. Within-run mass fractionation for Nd and Sr isotope compositions (IC) was corrected to 146Nd/144Nd = 0.7219, and 86Sr/88Sr = 0.1194, respectively. Uncertainties on the Nd and Sr isotope ratios are quoted typical as 2σm. Errors for the 87Rb/86Sr and 147Sm/144Nd ratios, respectively, are taken as ±1%, or smaller, based on iterative sample analysis and spike recalibration. During the period of investigation a 143Nd/144Nd ratio of 0.511850 ± 0.000005 (n = 5) and a 87Sr/86Sr ratio of 0.710274 ± 0.000008 (n = 5) were determined for the La Jolla (Nd) and the NBS987 (Sr) international standards, respectively. Details of techniques, accuracy and data precision of Rb-Sr and Sm-Nd isotopic measurements are given by Thöni et al. (2008).

Zircon separation, CL imaging and U-Th-Pb MC-ICP-MS dating

Zircon crystals were separated using standard techniques (crushing, hydrofracturing, washing, Wilfley table, magnetic separator and handpicking). The separation was carried out in the Institute of Geological Sciences, Polish Academy of Sciences, Cracow. Zircon grains were selected for the morphological study using scanning electron microscopy and then imaged by cathodoluminescence using a FET Philips 30 electron microscope (15 kV and 1 nA) at the Faculty of Earth Sciences, University of Silesia, Sosnowiec, Poland.

The LA-MC-ICP-MS (Laser Ablation Multi Collector ICP-MS) analytical work was performed in two sessions at the joint ICP-MS laboratory of the Department of Earth Sciences, Karl-Franzens-University Graz and the Institute of Applied Geosciences, Graz Technical University. Analytical procedures followed the methodology outlined in Klötzli et al. (2009). Zircon 206Pb/238U, 207Pb/206Pb, and 208Pb/232Th ratios and ages were determined using a 193nm Ar-F excimer laser (NewWave) coupled to a multi-collector ICP-MS (Nu Instruments Plasma II). Ablation using He as carrier gas was raster-wise according to the CL zonation pattern of the zircons. Line widths for rastering were 10–15 μm with a rastering speed of 5 μm/sec. Energy densities were 5–5.5 J/cm2 with a repetition rate of 10 Hz. The He carrier gas (0.7 l/min) was mixed with the Ar carrier gas flow prior to the ICP plasma torch. Ablation duration was 30 to 70 sec with a 30 sec gas and Hg blank measurement preceding ablation. Ablation count rates were corrected accordingly using the mean blank measurement intensities of the individual masses. Remaining counts on mass 204 were interpreted as representing 204Pb. Static mass spectrometer analysis was as follows: 238U and 232Th were measured in Faraday detectors, 208Pb, 207Pb, 206Pb, 204Pb+204Hg and 202Hg in discrete ion counter detectors. An integration time of 1 sec was used for all measurements. The ion counter - Faraday and inter-ion counter gain factors were determined before the analytical session using the reference zircon Plešovice (Sláma et al., 2008). The overall sensitivity for 206Pb on reference zircon Plešovice was c. 0.18 mV/weight-ppm 206Pb. For 238U the corresponding value was c. 0.39 mV/weight-ppm U. Isotopic ratios were calculated using the MS Excel spreadsheet LamTool U-Th-Pb version VI (Košler et al., 2008; Košler and Klötzli, unpublished). In order to avoid potential surface contamination, the signals from the first laser pass was rejected and untypical Pb-peaks, from Pb-rich inclusions, were removed in the LamTool spreadsheet. Mass and elemental bias and mass spectrometer drift of U/Pb, Th/Pb and Pb/Pb ratios, respectively, were corrected applying the “intercept method” of Sylvester and Ghaderi (1997). The calculated 206Pb/238U and 207Pb/206Pb intercept values, respectively, were corrected for mass discrimination from analyses of reference zircon Plešovice zircon (Sláma et al., 2008) measured during the analytical session using a standard bracketing method (Klötzli et al., 2009). The correction utilizes regression of standard measurements by a quadratic function. No common Pb correction was applied to the data. Final age calculations were performed with Isoplot© 3.75 (Ludwig, 2012). Reference zircon Plešovice (Sláma et al., 2008) was also used as secondary standard in order to derive an estimate of the overall uncertainties associated with the age determinations. 4 and 7 measurements where additionally made during the two analytical session, which resulted in concordia ages of 337.2 ± 3.6 Ma and 337 ± 10 Ma, respectively. These are within error identical to the accepted reference 206Pb/238U age of 337.13 ± 0.37 Ma (Sláma et al., 2008). These uncertainties where propagated in quadrature to the single dates in order to account for the overall analytical dispersion of the LA method (Klötzli et al., 2009). All errors reported for LA data are at the 2-sigma level.

Petrography and whole-rock geochemistry
Bugaj granite mega block

The samples collected from the Bugaj mega block are coarse-grained granite (Bu1, Fig. 2a, Fig. 3) to granodiorite (Bu2, Fig. 3), lacking any visible orientation, locally porphyritic. They are composed of pinkish K-feldspars (Or91-93Ab5-6Cn1-2), weakly zoned oligoclase (An18-25), biotite showing a brown-yellow pleochroism (Ti = 0.38– 0.42 a.p.f.u.; #fm = 0.65–0.66), locally replaced by chlorite and associated with secondary rutile. Accessory minerals are (Ca, F)-apatite and zircon. Sporadically rounded monzonitic enclaves up to 5–10 cm in size can be found, showing a sharp contact with the surrounding host rock. The enclaves are composed of fine-grained biotite (Ti = 0.30–0.38 a.p.f.u.), oligoclase (An20-26), and quartz. Accessory (Ca, F)-apatite is also observed (BuC, Fig. 3).

Fig. 2

Field photo (a) of the Bugaj granitoid (sample Bu1) and field photo (b) of the Andrychów orthogneiss (sample An).

Fig. 3

Classification position of the Bugaj granitoids in: (a) alkali (K2O + Na2O) versus SiO2 (TAS) classification diagram (Middlemost, 1985); (b) Primitive mantle-normalized (Sun and McDonough, 1989) multielement “spider” diagrams; (c) classification position of the Bugaj granitoids in Multicationic R1–R2 diagram (De La Roche et al.,1980), with fields numbered according to Batchelor and Bowden (1985); 1 – mantle fractionates, 2 – pre-plate collision suites, 3 – post-collision suites, 4 – late orogenic magmas, 5 – anorogenic suites, 6 – syncollisional (anatectic) suites. R1 = 4Si − 11(Na + K) − 2(Fe + Ti); R2 = 6Ca + 2 Mg + Al.

Studied rocks are peraluminous (ASI = 1.16–1.23) with silica contents around 60–71 wt.%, K2O ≥ Na2O and Rb/Sr ratios = 1.1–1.4 (Table 1). The rocks belong to the high K-calc-alkaline series and are intermediate between the ferroan and magnesian families of the Frost and Frost (2008) geochemical classification. Chondrite-normalized (Sun and McDonough, 1989) REE patterns show low LREE enrichment (CeN/YbN = 3.18–6.34) and a strong negative Eu anomaly (Eu/Eu* = 0.38–0.57; Table 1; Fig. 3b). Magma crystallization temperatures calculated on the basis of the Zr-saturation geothermometer of Watson and Harrison (1983) are in the range of 800–850°C

(Table 1). The primitive-mantle-normalized multielement diagram points to an arc-setting of the magma, with typical Nb and Ta negative anomalies, whereas the Batchelor and Bowden (1985) classification suggests a post-collisional to late-orogenic magmatic suite (Fig. 3b, 3c). Granodiorite-granite rocks show relatively high

Chemical composition and selected petrological indicators of Bugaj granitoid rocks.

Sample No Bu1 Bu2 BuC
SiO2 71.56 67.58 60.03
TiO2 0.38 0.7 0.98
Al2O3 14.13 14.89 16.63
Fe2O3T 3.04 5.31 8.32
MnO 0.06 0.09 0.14
MgO 0.77 1.34 2.46
CaO 0.92 1.5 1.89
Na2O 3.36 3.83 3.33
K2O 4.79 3.36 4.86
P2O5 0.11 0.22 0.18
LOI 0.71 1.13 0.9
Total 99.83 99.95 99.72
Sr 121.2 128 152.3
Ba 578 562 793
Rb 135.6 146.9 219.3
Cs 8.3 10.3 13.1
Th 11 11.7 1.3
U 2.6 1.4 10.1
Ga 16 20.4 20.5
Cr 82 109.5 116.3
Ni 11 14 27.9
V 43 75 135
Zr 150.9 283.6 226.8
Hf 4.9 7.6 6.2
Y 42.9 37.9 27
Nb 9.8 15.4 16.1
Ta 0.8 1.1 0.9
La 24.6 30.3 27.9
Ce 52.6 62.4 61.9
Pr 6.35 7.56 7.06
Nd 24.7 30.6 27.3
Sm 5.96 6.63 5.64
Eu 0.75 0.87 1.01
Gd 6.04 6.9 5.45
Tb 0.99 0.99 0.89
Dy 6.96 6.97 4.9
Ho 1.49 1.3 0.95
Er 4.32 3.62 3.1
Tm 0.69 0.56 0.41
Yb 4.56 3.67 2.69
Lu 0.64 0.5 0.42
ASI 1.17 1.23 1.21
#mg 0.56 0.7 0.31
Rb/Sr 1.12 1.15 1.44
ΣREE 140.65 162.87 149.62
Eu/Eu* 0.8 0.39 0.56
CeN/YbN 3.18 4.68 6.34
ThN/UN 1.04 2.06 0.03
TZr [°C] 798 850 818

Explanations

LoD – limits of detection; LOI – loss of ignition; Eu/Eu* = Eu/Sm·Gd; ASI = Al2O3/(CaO + Na2O + K2O − 3.33 P2O5) (in molecular values); TZr = temperature calculated according to Watson and Harrison (1983) procedure.

ThN/UN ratios (2.06 and 1.05 respectively), whereas the monzonitic enclave shows a strong positive U anomaly and a ThN/UN ratio of 0.03, suggesting a highly oxidised source (possibly mantle-type?) of the monzonitic magma (Fig. 3b; Table 1).

The whole-rock isotope geochemistry data of two Bugaj mega block samples are presented in Table 2 Both samples (Bu1, Bu2) show nearly identical 87Rb/86Sr ratios (3.154 ± 0.032 and 3.236 ± 0.032) as well as 87Sr/86Sr ratios (0.756053 ± 0.000004 and 0.755499 ± 0.000004). The initial 87Sr/86Sr(580 Ma) ratios are 0.72997 and 0.72874.

Rb-Sr and Sm-Nd whole rock isotope analysis of Bugaj granitoid rocks.

Isotope data 87Rb/86Sr ±2sm 87Sr/86Sr ±2sm 147Sm/144Nd ±2sm 143Nd/144Nd ±2sm Sr(580 Ma) Nd(580 Ma) Nd(CHUR)
Bugaj1 3.154 0.032 0.756053 0.000004 0.1521 0.0015 0.512397 0.000004 0.729966 0.511819 –1.4
Bugaj2 3.236 0.032 0.755499 0.000004 0.1366 0.0014 0.512428 0.000005 0.728739 0.511909 0.4

Contrary to the above the Sm-Nd isotope systematics of the two Bugaj mega block samples are dissimilar: 147Sm/144Nd ratios are 0.1521 ± 0.0015 (Bu1) and 0.1366 ± 0.0014 (Bu2). The 143Nd/144Nd ratios are 0.512397 ± 0.000004 and 0.512428 ± 0.000005, respectively. The resulting εNd580 are –1.4 and 0.4.

Andrychów orthogneiss mega block

The sample (An) is a medium-grained augen gneiss (Fig. 2b), consisting of quartz, K-feldspar, plagioclase (An10-18) and biotite. The foliation is defined by biotite, quartz ribbons and elongate feldspars. Accessory minerals are apatite and zircon. Due to the penetrative low-temperature and structural overprinting of the Andrychów mega block rocks, no detailed micro-chemical analyses, whole rock chemistry as well as Rb-Sr and Sm-Nd isotope whole rock geochemistry were obtained.

Zircon characteristics and U-Pb ages
Bugaj mega block

The zircons are colourless or slightly pink, euhedral, normal to very long-prismatic, even to acicular (aspect ratios 1:1 to 1:10). Grain sizes vary in length from ca. 50 to 350 μm (Fig. 4). A small percentage of zircon grains show an unusual habit contrasting markedly with the prismatic and acicular crystals (Fig. 4, p6Bu81). This habit is tabular, strongly flattened on the [110] crystal face (elongation ratio < 1). The typology falls into the S4 subtype group of Pupin (1980).

Fig. 4

Secondary electron (SE) images of selected zircon crystals from granite sample Bu1. See text for description.

The cathodoluminescence (CL) images reveal a complexity of the internal structure. A significant number of crystals shows igneous oscillatory growth zoning, with growth bands varying between fine and broad within individual grains (Fig. 5). Luminescence is variable, but mostly moderate. Some grains display a blurred, light grey zonation, present in the centre of the zircon crystals (Fig. 5, p3Bu01). A small number of inherited cores were observed in normal-prismatic crystals (Fig. 5).

Fig. 5

Compiled cathodoluminescence (CL) images showing the range of textures observed in zircon crystals from granite sample Bu1. See text for details. The white rectangles show the approximate location of laser ablation trenches (confirmed by re-inspecting grains under CL after the LA analysis) and are not to scale. The numbers refer to the analytical data presented in Table 3.

LA-MC-ICP-MS U–Pb zircon data from exotic mega blocks (samples An and Bu1).

Sample Blank corrected intensities Concentrations Atomic ratios Ages
Crystal 204Pb 206Pb 207Pb 208Pb 232Th 238U Pb Th U Th/U 206Pb 204Pb 2RSE 207Pb 235U 2RSE 206Pb 238U 2RSE 207Pb Rho 206Pb 2RSE 208Pb 206Pb 2RSE 208Pb 232Th 2RSE 238U 206Pb 2RSE 207Pb 206Pb 2RSE 206/238 age 2SD 206/207 age 2SD
(V) ×10-6 (V) ×10-4 (V) ×10-5 ×(10V) -5 ×(10V) -3 (V) ×10-2 (wppm) (%) (%) (%) (%) (%) (%) (%) (%) (Ma)
Andrychów An
p3An_02 6.10 39.0 23.0 51.0 11.0 6.30 10.1 24.4 139.9 0.17 908 8 0.6716 3.9 0.0795 3.8 0.48 0.0606 1.3 0.4316 4.9 0.0316 6.9 12.575 3.8 0.0606 1.3 493 19 624 29
p3An_03/1 7.00 68.0 41.0 97.0 28.0 10.0 17.7 64.8 140.6 0.46 1037 20 0.8044 6.3 0.0894 8.3 0.65 0.0642 4.3 0.4994 16.0 0.0228 13.1 11.189 8.3 0.0642 4.3 552 46 750 92
p3An_03/2 15.0 65.0 47.0 92.0 18.0 13.0 17.2 41.5 141.1 0.29 810 27 0.6698 10.3 0.0725 17.4 0.85 0.0681 16.1 0.4145 11.5 0.0357 22.5 13.799 17.4 0.0681 16.1 451 78 871 334
p3An_04/1 4.20 42.0 23.0 37.0 9.60 6.20 10.4 21.9 139.9 0.16 1241 8 0.7043 11.8 0.0873 10.8 0.46 0.0587 1.3 0.2440 11.8 0.0253 10.6 11.448 10.8 0.0587 1.3 540 58 554 29
p3An_04/2 4.90 35.0 20.0 41.0 11.0 4.90 9.1 25.3 139.7 0.18 1130 10 0.7178 12.0 0.0885 9.6 0.40 0.0591 2.5 0.3477 6.1 0.0224 10.3 11.295 9.6 0.0591 2.5 547 53 572 54
p3An_06/1 4.40 120 140 220 14.0 3.70 33.3 31.8 139.5 0.23 3187 14 7.2106 12.5 0.3956 13.2 0.53 0.1319 1.3 0.5778 4.2 0.0870 25.5 2.528 13.2 0.1319 1.3 2149 284 2123 23
p3An_06/2 5.00 190 200 98.0 7.90 9.20 47.1 18.1 140.4 0.13 nd nd 4.2498 7.3 0.2650 8.7 0.59 0.1138 1.1 0.1669 23.5 0.0849 10.1 3.774 8.7 0.1138 1.1 1515 132 1861 20
p3An_07 4.70 64.0 38.0 80.0 25.0 10.0 16.5 58.1 140.5 0.41 1767 16 0.7138 9.9 0.0800 14.2 0.71 0.0646 3.7 0.3529 8.5 0.0219 14.5 12.500 14.2 0.0646 3.7 496 70 761 79
p3An_08 5.00 150 140 170 17.0 8.00 39.9 39.3 140.2 0.28 3863 15 3.0343 15.2 0.2317 15.5 0.51 0.0947 0.5 0.3318 5.8 0.0696 10.8 4.316 15.5 0.0947 0.5 1343 208 1521 9
p3An_09 6.60 70.0 43.0 120 31.0 10.0 18.8 70.9 140.5 0.50 1540 15 0.8438 9.6 0.0933 11.5 0.60 0.0644 3.7 0.4983 7.2 0.0267 10.5 10.717 11.5 0.0644 3.7 575 66 753 79
p3An_10 5.80 55.0 32.0 93.0 28.0 7.20 14.7 63.3 140.1 0.45 1259 2 0.8063 5.7 0.0950 5.6 0.49 0.0613 0.9 0.4459 2.9 0.0224 8.3 10.523 5.6 0.0613 0.9 585 33 649 20
p3An_11 6.90 24.0 17.0 33.0 8.5 3.50 6.3 19.4 139.5 0.14 580 19 0.9325 10.9 0.0969 9.3 0.43 0.0690 8.6 0.3371 12.2 0.0261 15.1 10.317 9.3 0.0690 8.6 596 55 899 177
p3An_12/1 4.60 47.0 27.0 10.0 2.2 6.90 11.0 5.1 140.0 0.04 nd nd 0.6993 8.5 0.0850 9.1 0.53 0.0595 0.7 0.0568 8.1 0.0301 7.2 11.764 9.1 0.0595 0.7 526 48 587 15
p3An_12/2 4.90 19.0 12.0 16.0 5.5 2.40 4.8 12.5 139.3 0.09 473 11 1.0174 17.2 0.1134 15.9 0.46 0.0642 3.8 0.2989 40.0 0.0204 18.4 8.821 15.9 0.0642 3.8 692 110 750 80
p3An_13 25.0 52.0 67.0 110 19.0 13.0 15.1 43.7 141.1 0.31 193 40 0.9691 11.9 0.0507 22.8 0.96 0.1481 17.2 0.6235 26.8 0.0780 39.6 19.741 22.8 0.1481 17.2 319 73 2324 295
Bugaj Bu1
p2Bu_01 14.0 44.0 37.0 63.0 12.0 5.80 11.8 27.5 139.8 0.20 341 14 0.8705 5.0 0.0947 4.0 0.40 0.0624 3.7 0.2605 7.2 0.0209 7.4 10.560 4.0 0.0624 3.7 583 23 688 79
p2Bu_05 nd 44.0 28.0 85.0 12.0 4.50 12.0 27.2 139.6 0.19 nd nd 0.8737 6.3 0.1071 6.6 0.52 0.0592 0.9 0.5936 20.8 0.0263 8.7 9.341 6.6 0.0592 0.9 656 43 573 19
p2Bu_08 6.80 58.0 38.0 81.0 11.0 6.60 15.3 26.3 140.0 0.19 1018 11 0.7378 6.4 0.0896 7.1 0.55 0.0597 1.1 0.3524 8.2 0.0217 6.6 11.157 7.1 0.0597 1.1 553 39 592 25
p2Bu_10/1 50.0 85.0 93.0 180 190 16.0 24.6 435.3 141.5 3.08 931 187 0.7942 38.6 0.1102 177.8 2.31 0.0287 1356 0.0650 3667 0.0207 217.6 9.073 177.8 0.0287 1356 674 1199 - -
p2Bu_10/2 25.0 180 120 270 38.0 20.0 47.8 87.8 142.3 0.62 946 6 0.7912 8.6 0.0928 9.0 0.52 0.0611 2.9 0.3029 10.6 0.0221 7.9 10.776 9.0 0.0611 2.9 572 52 643 62
p2Bu_19 17.0 89.0 57.0 76.0 9.70 10.0 22.4 22.1 140.6 0.16 nd nd 0.7638 3.2 0.0967 3.1 0.49 0.0575 0.4 0.3044 42.1 0.0244 5.9 10.339 3.1 0.0575 0.4 595 18 510 9
p2Bu_23 14.0 110 130 270 11.0 4.30 33.5 26.1 139.6 0.19 992 1 4.6704 5.0 0.3121 4.5 0.45 0.1084 1.3 0.5018 4.7 0.0751 6.1 3.204 4.5 0.1084 1.3 1751 78 1773 25
p2Bu_30 7.80 88.0 56.0 170 22.0 10.0 24.0 50.8 140.6 0.36 nd nd 0.7806 9.3 0.0978 7.6 0.41 0.0578 1.7 0.3649 33.3 0.0237 14.5 10.229 7.6 0.0578 1.7 601 46 524 37
2Bu_32 9.90 54.0 35.0 50.0 5.80 5.90 13.7 13.3 139.9 0.09 801 3 0.7487 5.2 0.0931 5.6 0.54 0.0584 0.7 0.2113 22.7 0.0269 5.1 10.742 5.6 0.0584 0.7 574 32 546 15
p2Bu_35/1 8.60 59.0 38.0 53.0 6.10 6.90 14.8 14.1 140.0 0.10 723 8 0.7295 5.2 0.0877 7.3 0.70 0.0598 2.1 0.2684 25.8 0.0252 16.0 11.405 7.3 0.0598 2.1 542 40 597 45
p2Bu_35/2 7.80 84.0 56.0 39.0 4.10 8.90 20.4 9.5 140.4 0.07 863 74 0.8119 24.6 0.0960 34.0 0.69 0.0606 6.9 0.1682 122.6 0.0356 36.3 10.420 34.0 0.0606 6.9 591 201 624 149
p3Bu_01/1 11.0 61.0 51.0 69.0 55.0 12.0 15.8 125.9 140.9 0.89 546 30 0.7773 8.6 0.0692 4.3 0.25 0.0839 9.0 0.4171 20.2 0.0128 21.3 14.460 4.3 0.0839 9.0 431 19 1290 176
p3Bu_01/2 4.60 15.0 11.0 17.0 11.0 2.10 3.8 25.3 139.2 0.18 nd nd 0.8730 17.3 0.0946 11.9 0.35 0.0646 19.5 0.3371 54.8 0.0198 24.3 10.569 11.9 0.0646 19.5 583 69 762 412
p3Bu_01/3 17.0 48.0 42.0 120 83.0 8.30 14.0 189.3 140.3 1.35 453 22 0.8695 6.4 0.0800 9.1 0.71 0.0814 10.4 0.9599 19.5 0.0218 15.0 12.506 9.1 0.0814 10.4 496 45 1232 204
p3Bu_03/1 nd 1.80 1.10 1.20 0.740 0.250 0.4 1.7 138.9 0.01 nd nd 0.9325 36.6 0.1145 39.4 0.54 0.0599 6.2 0.2290 15.0 0.0153 106.6 8.736 39.4 0.0599 6.2 699 276 599 135
p3Bu_03/2 4.20 0.780 0.51 0.57 0.390 0.110 0.2 0.9 138.9 0.01 40 11 0.9258 14.2 0.1104 13.4 0.47 0.0609 4.3 0.2333 6.9 0.0196 16.7 9.054 13.4 0.0609 4.3 675 90 636 92
p3Bu_04 4.00 0.980 0.67 0.50 0.350 0.150 0.2 0.8 138.9 0.01 nd nd 0.8442 21.7 0.0930 23.3 0.54 0.0646 9.0 0.1726 20.3 0.0140 70.5 10.749 23.3 0.0646 9.0 573 133 761 189
p3Bu_09/1 42.0 33.0 52.0 120 76.0 7.30 10.8 175.0 140.1 1.25 199 25 2.1793 196.9 0.1178 133.3 0.34 0.1021 96.8 0.7533 129.5 0.0158 695.3 8.488 133.3 0.1021 96.8 718 957 1663 1791
p3Bu_09/2 5.80 35.0 24.0 75.0 29.0 5.50 9.7 66.8 139.8 0.48 720 4 0.8187 4.0 0.0926 2.4 0.29 0.0645 3.6 0.9196 17.5 0.0279 4.4 10.799 2.4 0.0645 3.6 571 13 758 76
p3Bu_10 nd 16.0 10.0 30.0 12.0 2.50 4.4 26.7 139.3 0.19 nd nd 0.7826 1.9 0.0956 1.7 0.44 0.0592 0.6 0.6439 3.7 0.0284 2.2 10.459 1.7 0.0592 0.6 589 10 576 13
p3Bu_12 5.40 32.0 20.0 31.0 12.0 4.90 8.1 26.9 139.7 0.19 567 6 0.7593 11.7 0.0936 10.2 0.44 0.0588 3.2 0.4832 241.3 0.0287 19.4 10.679 10.2 0.0588 3.2 577 59 559 69
p3Bu_13/1 4.60 24.0 15.0 23.0 8.10 3.60 6.0 18.6 139.5 0.13 nd nd 0.7762 3.9 0.0943 4.9 0.63 0.0596 1.9 0.5016 75.8 0.0295 21.6 10.603 4.9 0.0596 1.9 581 28 589 41
p3Bu_13/2 6.80 15.0 9.90 8.10 6.40 2.30 3.6 14.7 139.3 0.11 346 61 0.8443 39.7 0.0908 21.5 0.27 0.0670 27.5 0.2070 122.8 0.0159 110.5 11.014 21.5 0.0670 27.5 560 120 838 573
p3Bu_14 4.00 16.0 9.80 15.0 5.90 2.40 4.0 13.4 139.3 0.10 119 15 0.7477 4.0 0.0892 4.6 0.58 0.0607 0.9 0.5905 20.3 0.0288 5.2 11.216 4.6 0.0607 0.9 551 25 630 20
p3Bu_15 5.30 2.10 1.60 3.20 1.70 0.320 0.6 4.0 138.9 0.03 52 12 0.9670 14.2 0.0905 13.8 0.49 0.0762 7.9 0.5176 12.7 0.0196 17.1 11.045 13.8 0.0762 7.9 559 77 1099 158

2RSE 2-sigma relative standard error (in %), Rho the error correlation between the 206/238 and 207/235 ratios.

Crystal domains targeted for dating are characterized by the presence of a well-developed fine-scale oscillatory growth zonation (Fig. 5). 25 dates on 19 crystals were gained (Table 3, Fig. 5). Individual 206Pb/238U dates range from 1751 ± 78 Ma to 431 ± 19 Ma, whereas 207Pb/206Pb dates range from 1773 ± 25 Ma to 510 ± 9 Ma, respectively. No systematic difference between the two populations could be detected. Thus the final age calculation took into account all analysed crystals of the Bugaj1 sample. One analysis (Bugaj1_p2bu_023A) is concordant at an age of ca. 1760 Ma (Fig. 6a). 14 dates form a sub-concordant (discordance < 5%) cluster with a lower intercept date of 580.1 ± 6.0 Ma (Fig. 6b, model 1 solution, anchored at 207Pb/206Pb = 0.85 ± 0.05, MSWD = 1.8, Probability of fit = 0.031). These crystals show a mean Th/U of 0.16 ± 0.07. Three sub-concordant analyses (discordance < 5%), characterized by comparably high Th/U (0.30 ± 0.04), form a cluster with a lower intercept date of 662 ± 37 Ma (not shown, model 1 solution, anchored at 207Pb/206Pb = 0.85 ± 0.05, MSWD = 0.12, Probability of fit = 0.89). This lower intercept date is statistically distinguishable from the former one, also based on the disparate Th/U ratios of the two clusters. The remaining 7 analyses are highly discordant with high Th/U ratios (0.72 ± 0.35), again statistically distinguishable from the former two clusters.

Fig. 6

Tera-Wasserburg diagrams presenting the U/Pb age of the zircons from granite sample Bu1: a) all data points; b) concordant to sub-concordant data points. The inherited xenocryst (p2Bu_23) and the three data points showing recent lead loss (p3Bu_01/1, p3Bu_01/1, p3Bu_09/1) are not shown.

Andrychów mega block

Zircon grains are euhedral, up to 300 μm long, with aspect ratios from 1:1 to 1:3 (Fig. 7). They are clear, yellow and greenish yellow in colour.

In CL images a variably developed oscillatory growth zoning is the prominent feature of all analysed grains, as shown by moderate to weak luminescence. Some crystals display core-rim structures. The cores are characterized by oscillatory growth zoning with high/moderate CL intensity (Fig. 8).

Fig. 7

Secondary electron (SE) images of selected zircon crystals from orthogneiss sample An. See text for description.

Fig. 8

Compiled cathodoluminescence (CL) images showing the range of textures observed in zircon crystals from orthogneiss sample An. See text for details. The white rectangles show the approximate location of laser ablation trenches (confirmed by re-inspecting grains under CL after the LA analysis) and are not to scale. The numbers refer to the analytical data presented in Table 3.

Crystal domains targeted for dating are characterized by the presence of a well-developed fine-scale oscillatory growth zonation (Fig. 8). 15 dates on 10 crystals were gained (Table 3, Fig. 8). Individual 206Pb/238U dates range from 2149 ± 284 Ma to 319 ± 73 Ma, whereas 207Pb/206Pb dates range from 2324 ± 295 Ma to 554 ± 29 Ma, respectively. One analysis (Andrychów_p3an_06A) is concordant at an age of 2123 ± 23 Ma (Fig. 9a). 7 dates form a sub-concordant (discordance < 5%) cluster with a mean Th/U of 0.23 ± 0.11. Two lower intercept dates can be calculated: i) 549 ± 29 Ma with an upper intercept at 2432 ± 1500 Ma (not shown, model 1 solution, MSWD = 0.99, Probability of fit = 0.42); ii) 542 ± 21 Ma with the upper intercept fixed at 2123 ± 23 Ma of analysis Andrychów_p3an_06A (Fig. 9b, model 1 solution, MSWD = 0.86, Probability of fit = 0.53).

Fig. 9

Tera-Wasserburg diagrams for isotopic ratio for zircon crystals from orthogneiss sample An: a) all data points; b) concordant to sub-concordant data points defining a discordia line with a lower intercept of 542 ± 21 Ma (forced through data point p3An_06/1). The inherited xenocrysts (p3An_06/1, p3An_06/2) and the two data points showing recent lead loss (p3An_08, p3An_13) are not shown.

The calculated upper intercept value of 2432 ± 1500 Ma of i) is well within uncertainty with the concordant age value of 2123 ± 23 Ma used for the calculation in ii). Also the two lower intercept ages are identical within their uncertainty limits.

The remaining analyses either are strongly discordant (discordance > 10%) or sub-concordant (discordance < 5%) at 207Pb/206Pb ages between 2324 ± 295 Ma and 624 ± 29 Ma. The Th/U ratios of these analyses are identical to the former one (0.18 ± 0.06).

Discussion

Exotics represent one of the most important sources of information about Carpathian alimentary areas, indirectly indicating their geotectonic history. For both exotic mega blocks (sample Bugaj and sample Andrychów) igneous formation ages were derived from the zircon U-Pb data.

The Cadomian age (580.1 ± 6.0 Ma) from sample Bu1 is interpreted as magmatic crystallization age of the Bugaj granitoids. A fine-scale oscillatory zonation in the CL images as well as Th/U ratio of 0.16 ± 0.07 point to igneous crystal growth (Corfu et al., 2003). Three analyses (Th/U ratios 0.30 ± 0.04), forming a cluster with a lower intercept age of 662 ± 37 Ma are interpreted to reflect a major contribution from a single inheritance source to the ca. 580 Ma igneous event. The singular 207Pb/206Pb age of 1773 ± 25 Ma (p2Bu_23) represents a xenocryst.

The Sr and Nd whole-rock isotope data are controversial. The initial (at ca. 580 Ma) 87Sr/86Sr ratios of the Bugaj granitoids (0.72997 and 0.72874) are highly radiogenic, pointing to the assimilation of an older, possibly strongly Rb enriched source to the Bugaj melt. On the other hand, the Nd isotope systematics (εNd580 –1.4 and 0.4) rather point to a significant contribution of a distinct mantle source to the Bugaj melt. These geochemical data thus allow to recognize a hybrid geochemical character of the investigated rocks and/or decoupling of the Rb-Sr and Sm-Nd isotopic systems during post-magmatic alteration also supported by the presence of mafic enclaves. Such a hybrid character is also reflected in the high K-calcalkaline series affinity with the intermediate association of the ferroan and magnesian families (Frost and Frost, 2008). Also the relatively high ThN/UN ratios (2.06 and 1.05) are remarkably well reflected in the high Th/U ratios of some zircon domains (0.72 ± 0.35). It is not clear, whether this hybridisation is a primary one, i.e. occurring during protolith formation or a secondary one.

The biotite K-Ar age of 485 ± 10 Ma (Haber and Hałas, 2001) indicates either slow cooling to ca. 300°C after the 580 Ma magmatic event or a Lower Ordovician thermal and possibly fluid-related overprint, which might have caused the resetting of the Rb-Sr system which resulted in highly radiogenic 87Sr/86Sr ratios. It has to be noticed however, that such an event is not detected in the U-Pb zircon data. This fact is in favour of the slow cooling model.

In the Andrychów sample, the lower intercept age of 542 ± 21 Ma, obtained from zircon domains exhibiting a fine-scale oscillatory growth zonation in the CL images, is interpreted as the uppermost Proterozoic to Cambrian magmatic crystallization age of the granitic precursor of the orthogneiss. The concordant age at 2123 ± 23 Ma represents Palaeoproterozoic inheritance. There is no evidence for a Variscan (Devonian-Carboniferous) or Alpine (Neogene) metamorphic overprint, neither from the zircon U-Pb age systematics nor from the zircon mineral chemistry, i.e. the Th/U ratios (samples Bu1 and An), and the whole-rock isotope geochemistry (sample Bu1). Lack of any Variscan overprint suggests no similarities of the analysed exotic mega blocks to the crystalline basement of the Inner Western Carpathians, showing the Variscan consolidation, e.g. from granitoids of the Tatra Massif (e.g. Burda and Klötzli, 2011; Burda et al., 2013).

The U-Pb zircon ages presented in this study are consistent with published results (monazite Th-U-total Pb dating, K-Ar dating of muscovite and biotite), reported from clastic material supplying Silesian basin from the Brunovistulicum and/or Małopolska Terranes as northern source areas (Poprawa et al., 2004, 2005, 2006; Budzyń et al., 2008, 2011).

The sequence of events obtained from U-Pb zircon ages from Bugaj and Andrychów exotic mega blocks shows similarities to magmatic-metamorphic events identified in the Brunovistulicum Terrane. These events include: a) terrane collision with deformation, metamorphism and plutonism at ca. 650–620 Ma; b) arc-type granitoid intrusions at ca. 590–580 Ma and c) late bimodal magmatism and strike-slip deformation at ca. 560–550 Ma. No evidence for Variscan magmatism and/or metamorphism has emerged (e.g. Finger et al., 2000; Żelaźniewicz et al., 2009 and references therein). Also the εNd580 (–1.4 and 0.4) obtained for the Bugaj granitoid is similar to the Neoproterozoic igneous rocks from the Brunovistulicum Terrane having εNd580 values ranging from –1 to +3 (Finger et al., 2000).

Our investigations thus support the connection of the exotic mega blocks with the Avalonian-Cadomian orogenic belt during the Neoproterozoic (Żelaźniewicz et al., 2009).

Conclusions

For both exotic mega blocks (Bugaj and Andrychów) igneous formation ages could be derived from the zircon U-Pb data. These are 542 ± 21 Ma for the orthogneiss from Andrychów and 580.1 ± 6.0 Ma for the granitoid from Bugaj.

The U-Pb zircon ages, derived from > 100 m sized exotic mega blocks, directly reflect the presence of substantial amounts of a proximal ‘Cadomian’ aged crust proper in the vicinity of the WOC basement. This is a marked difference to earlier published data, which are derived from cm-dm sized pebbles only. As these can easily be derived from re-sedimented sources the ages do not necessarily reflect direct derivation from a ‘Cadomian’ basement, inasmuch as transport distances are not known.

Exotic mega blocks deposited to the WOC basins were related to the Brunovistulicum Terrane. They belong to the group of Vendian/Early Cambrian granitoids, representing the latest, post-tectonic expression of the Cadomian cycle.

Fig. 1

Simplified geological map of the Polish part of the Western Carpathians (after Żelaźniewicz el al., 2011, modified) with the location of the investigated samples (shown as yellow dots).
Simplified geological map of the Polish part of the Western Carpathians (after Żelaźniewicz el al., 2011, modified) with the location of the investigated samples (shown as yellow dots).

Fig. 2

Field photo (a) of the Bugaj granitoid (sample Bu1) and field photo (b) of the Andrychów orthogneiss (sample An).
Field photo (a) of the Bugaj granitoid (sample Bu1) and field photo (b) of the Andrychów orthogneiss (sample An).

Fig. 3

Classification position of the Bugaj granitoids in: (a) alkali (K2O + Na2O) versus SiO2 (TAS) classification diagram (Middlemost, 1985); (b) Primitive mantle-normalized (Sun and McDonough, 1989) multielement “spider” diagrams; (c) classification position of the Bugaj granitoids in Multicationic R1–R2 diagram (De La Roche et al.,1980), with fields numbered according to Batchelor and Bowden (1985); 1 – mantle fractionates, 2 – pre-plate collision suites, 3 – post-collision suites, 4 – late orogenic magmas, 5 – anorogenic suites, 6 – syncollisional (anatectic) suites. R1 = 4Si − 11(Na + K) − 2(Fe + Ti); R2 = 6Ca + 2 Mg + Al.
Classification position of the Bugaj granitoids in: (a) alkali (K2O + Na2O) versus SiO2 (TAS) classification diagram (Middlemost, 1985); (b) Primitive mantle-normalized (Sun and McDonough, 1989) multielement “spider” diagrams; (c) classification position of the Bugaj granitoids in Multicationic R1–R2 diagram (De La Roche et al.,1980), with fields numbered according to Batchelor and Bowden (1985); 1 – mantle fractionates, 2 – pre-plate collision suites, 3 – post-collision suites, 4 – late orogenic magmas, 5 – anorogenic suites, 6 – syncollisional (anatectic) suites. R1 = 4Si − 11(Na + K) − 2(Fe + Ti); R2 = 6Ca + 2 Mg + Al.

Fig. 4

Secondary electron (SE) images of selected zircon crystals from granite sample Bu1. See text for description.
Secondary electron (SE) images of selected zircon crystals from granite sample Bu1. See text for description.

Fig. 5

Compiled cathodoluminescence (CL) images showing the range of textures observed in zircon crystals from granite sample Bu1. See text for details. The white rectangles show the approximate location of laser ablation trenches (confirmed by re-inspecting grains under CL after the LA analysis) and are not to scale. The numbers refer to the analytical data presented in Table 3.
Compiled cathodoluminescence (CL) images showing the range of textures observed in zircon crystals from granite sample Bu1. See text for details. The white rectangles show the approximate location of laser ablation trenches (confirmed by re-inspecting grains under CL after the LA analysis) and are not to scale. The numbers refer to the analytical data presented in Table 3.

Fig. 6

Tera-Wasserburg diagrams presenting the U/Pb age of the zircons from granite sample Bu1: a) all data points; b) concordant to sub-concordant data points. The inherited xenocryst (p2Bu_23) and the three data points showing recent lead loss (p3Bu_01/1, p3Bu_01/1, p3Bu_09/1) are not shown.
Tera-Wasserburg diagrams presenting the U/Pb age of the zircons from granite sample Bu1: a) all data points; b) concordant to sub-concordant data points. The inherited xenocryst (p2Bu_23) and the three data points showing recent lead loss (p3Bu_01/1, p3Bu_01/1, p3Bu_09/1) are not shown.

Fig. 7

Secondary electron (SE) images of selected zircon crystals from orthogneiss sample An. See text for description.
Secondary electron (SE) images of selected zircon crystals from orthogneiss sample An. See text for description.

Fig. 8

Compiled cathodoluminescence (CL) images showing the range of textures observed in zircon crystals from orthogneiss sample An. See text for details. The white rectangles show the approximate location of laser ablation trenches (confirmed by re-inspecting grains under CL after the LA analysis) and are not to scale. The numbers refer to the analytical data presented in Table 3.
Compiled cathodoluminescence (CL) images showing the range of textures observed in zircon crystals from orthogneiss sample An. See text for details. The white rectangles show the approximate location of laser ablation trenches (confirmed by re-inspecting grains under CL after the LA analysis) and are not to scale. The numbers refer to the analytical data presented in Table 3.

Fig. 9

Tera-Wasserburg diagrams for isotopic ratio for zircon crystals from orthogneiss sample An: a) all data points; b) concordant to sub-concordant data points defining a discordia line with a lower intercept of 542 ± 21 Ma (forced through data point p3An_06/1). The inherited xenocrysts (p3An_06/1, p3An_06/2) and the two data points showing recent lead loss (p3An_08, p3An_13) are not shown.
Tera-Wasserburg diagrams for isotopic ratio for zircon crystals from orthogneiss sample An: a) all data points; b) concordant to sub-concordant data points defining a discordia line with a lower intercept of 542 ± 21 Ma (forced through data point p3An_06/1). The inherited xenocrysts (p3An_06/1, p3An_06/2) and the two data points showing recent lead loss (p3An_08, p3An_13) are not shown.

Rb-Sr and Sm-Nd whole rock isotope analysis of Bugaj granitoid rocks.

Isotope data 87Rb/86Sr ±2sm 87Sr/86Sr ±2sm 147Sm/144Nd ±2sm 143Nd/144Nd ±2sm Sr(580 Ma) Nd(580 Ma) Nd(CHUR)
Bugaj1 3.154 0.032 0.756053 0.000004 0.1521 0.0015 0.512397 0.000004 0.729966 0.511819 –1.4
Bugaj2 3.236 0.032 0.755499 0.000004 0.1366 0.0014 0.512428 0.000005 0.728739 0.511909 0.4

Chemical composition and selected petrological indicators of Bugaj granitoid rocks.

Sample No Bu1 Bu2 BuC
SiO2 71.56 67.58 60.03
TiO2 0.38 0.7 0.98
Al2O3 14.13 14.89 16.63
Fe2O3T 3.04 5.31 8.32
MnO 0.06 0.09 0.14
MgO 0.77 1.34 2.46
CaO 0.92 1.5 1.89
Na2O 3.36 3.83 3.33
K2O 4.79 3.36 4.86
P2O5 0.11 0.22 0.18
LOI 0.71 1.13 0.9
Total 99.83 99.95 99.72
Sr 121.2 128 152.3
Ba 578 562 793
Rb 135.6 146.9 219.3
Cs 8.3 10.3 13.1
Th 11 11.7 1.3
U 2.6 1.4 10.1
Ga 16 20.4 20.5
Cr 82 109.5 116.3
Ni 11 14 27.9
V 43 75 135
Zr 150.9 283.6 226.8
Hf 4.9 7.6 6.2
Y 42.9 37.9 27
Nb 9.8 15.4 16.1
Ta 0.8 1.1 0.9
La 24.6 30.3 27.9
Ce 52.6 62.4 61.9
Pr 6.35 7.56 7.06
Nd 24.7 30.6 27.3
Sm 5.96 6.63 5.64
Eu 0.75 0.87 1.01
Gd 6.04 6.9 5.45
Tb 0.99 0.99 0.89
Dy 6.96 6.97 4.9
Ho 1.49 1.3 0.95
Er 4.32 3.62 3.1
Tm 0.69 0.56 0.41
Yb 4.56 3.67 2.69
Lu 0.64 0.5 0.42
ASI 1.17 1.23 1.21
#mg 0.56 0.7 0.31
Rb/Sr 1.12 1.15 1.44
ΣREE 140.65 162.87 149.62
Eu/Eu* 0.8 0.39 0.56
CeN/YbN 3.18 4.68 6.34
ThN/UN 1.04 2.06 0.03
TZr [°C] 798 850 818

LA-MC-ICP-MS U–Pb zircon data from exotic mega blocks (samples An and Bu1).

Sample Blank corrected intensities Concentrations Atomic ratios Ages
Crystal 204Pb 206Pb 207Pb 208Pb 232Th 238U Pb Th U Th/U 206Pb 204Pb 2RSE 207Pb 235U 2RSE 206Pb 238U 2RSE 207Pb Rho 206Pb 2RSE 208Pb 206Pb 2RSE 208Pb 232Th 2RSE 238U 206Pb 2RSE 207Pb 206Pb 2RSE 206/238 age 2SD 206/207 age 2SD
(V) ×10-6 (V) ×10-4 (V) ×10-5 ×(10V) -5 ×(10V) -3 (V) ×10-2 (wppm) (%) (%) (%) (%) (%) (%) (%) (%) (Ma)
Andrychów An
p3An_02 6.10 39.0 23.0 51.0 11.0 6.30 10.1 24.4 139.9 0.17 908 8 0.6716 3.9 0.0795 3.8 0.48 0.0606 1.3 0.4316 4.9 0.0316 6.9 12.575 3.8 0.0606 1.3 493 19 624 29
p3An_03/1 7.00 68.0 41.0 97.0 28.0 10.0 17.7 64.8 140.6 0.46 1037 20 0.8044 6.3 0.0894 8.3 0.65 0.0642 4.3 0.4994 16.0 0.0228 13.1 11.189 8.3 0.0642 4.3 552 46 750 92
p3An_03/2 15.0 65.0 47.0 92.0 18.0 13.0 17.2 41.5 141.1 0.29 810 27 0.6698 10.3 0.0725 17.4 0.85 0.0681 16.1 0.4145 11.5 0.0357 22.5 13.799 17.4 0.0681 16.1 451 78 871 334
p3An_04/1 4.20 42.0 23.0 37.0 9.60 6.20 10.4 21.9 139.9 0.16 1241 8 0.7043 11.8 0.0873 10.8 0.46 0.0587 1.3 0.2440 11.8 0.0253 10.6 11.448 10.8 0.0587 1.3 540 58 554 29
p3An_04/2 4.90 35.0 20.0 41.0 11.0 4.90 9.1 25.3 139.7 0.18 1130 10 0.7178 12.0 0.0885 9.6 0.40 0.0591 2.5 0.3477 6.1 0.0224 10.3 11.295 9.6 0.0591 2.5 547 53 572 54
p3An_06/1 4.40 120 140 220 14.0 3.70 33.3 31.8 139.5 0.23 3187 14 7.2106 12.5 0.3956 13.2 0.53 0.1319 1.3 0.5778 4.2 0.0870 25.5 2.528 13.2 0.1319 1.3 2149 284 2123 23
p3An_06/2 5.00 190 200 98.0 7.90 9.20 47.1 18.1 140.4 0.13 nd nd 4.2498 7.3 0.2650 8.7 0.59 0.1138 1.1 0.1669 23.5 0.0849 10.1 3.774 8.7 0.1138 1.1 1515 132 1861 20
p3An_07 4.70 64.0 38.0 80.0 25.0 10.0 16.5 58.1 140.5 0.41 1767 16 0.7138 9.9 0.0800 14.2 0.71 0.0646 3.7 0.3529 8.5 0.0219 14.5 12.500 14.2 0.0646 3.7 496 70 761 79
p3An_08 5.00 150 140 170 17.0 8.00 39.9 39.3 140.2 0.28 3863 15 3.0343 15.2 0.2317 15.5 0.51 0.0947 0.5 0.3318 5.8 0.0696 10.8 4.316 15.5 0.0947 0.5 1343 208 1521 9
p3An_09 6.60 70.0 43.0 120 31.0 10.0 18.8 70.9 140.5 0.50 1540 15 0.8438 9.6 0.0933 11.5 0.60 0.0644 3.7 0.4983 7.2 0.0267 10.5 10.717 11.5 0.0644 3.7 575 66 753 79
p3An_10 5.80 55.0 32.0 93.0 28.0 7.20 14.7 63.3 140.1 0.45 1259 2 0.8063 5.7 0.0950 5.6 0.49 0.0613 0.9 0.4459 2.9 0.0224 8.3 10.523 5.6 0.0613 0.9 585 33 649 20
p3An_11 6.90 24.0 17.0 33.0 8.5 3.50 6.3 19.4 139.5 0.14 580 19 0.9325 10.9 0.0969 9.3 0.43 0.0690 8.6 0.3371 12.2 0.0261 15.1 10.317 9.3 0.0690 8.6 596 55 899 177
p3An_12/1 4.60 47.0 27.0 10.0 2.2 6.90 11.0 5.1 140.0 0.04 nd nd 0.6993 8.5 0.0850 9.1 0.53 0.0595 0.7 0.0568 8.1 0.0301 7.2 11.764 9.1 0.0595 0.7 526 48 587 15
p3An_12/2 4.90 19.0 12.0 16.0 5.5 2.40 4.8 12.5 139.3 0.09 473 11 1.0174 17.2 0.1134 15.9 0.46 0.0642 3.8 0.2989 40.0 0.0204 18.4 8.821 15.9 0.0642 3.8 692 110 750 80
p3An_13 25.0 52.0 67.0 110 19.0 13.0 15.1 43.7 141.1 0.31 193 40 0.9691 11.9 0.0507 22.8 0.96 0.1481 17.2 0.6235 26.8 0.0780 39.6 19.741 22.8 0.1481 17.2 319 73 2324 295
Bugaj Bu1
p2Bu_01 14.0 44.0 37.0 63.0 12.0 5.80 11.8 27.5 139.8 0.20 341 14 0.8705 5.0 0.0947 4.0 0.40 0.0624 3.7 0.2605 7.2 0.0209 7.4 10.560 4.0 0.0624 3.7 583 23 688 79
p2Bu_05 nd 44.0 28.0 85.0 12.0 4.50 12.0 27.2 139.6 0.19 nd nd 0.8737 6.3 0.1071 6.6 0.52 0.0592 0.9 0.5936 20.8 0.0263 8.7 9.341 6.6 0.0592 0.9 656 43 573 19
p2Bu_08 6.80 58.0 38.0 81.0 11.0 6.60 15.3 26.3 140.0 0.19 1018 11 0.7378 6.4 0.0896 7.1 0.55 0.0597 1.1 0.3524 8.2 0.0217 6.6 11.157 7.1 0.0597 1.1 553 39 592 25
p2Bu_10/1 50.0 85.0 93.0 180 190 16.0 24.6 435.3 141.5 3.08 931 187 0.7942 38.6 0.1102 177.8 2.31 0.0287 1356 0.0650 3667 0.0207 217.6 9.073 177.8 0.0287 1356 674 1199 - -
p2Bu_10/2 25.0 180 120 270 38.0 20.0 47.8 87.8 142.3 0.62 946 6 0.7912 8.6 0.0928 9.0 0.52 0.0611 2.9 0.3029 10.6 0.0221 7.9 10.776 9.0 0.0611 2.9 572 52 643 62
p2Bu_19 17.0 89.0 57.0 76.0 9.70 10.0 22.4 22.1 140.6 0.16 nd nd 0.7638 3.2 0.0967 3.1 0.49 0.0575 0.4 0.3044 42.1 0.0244 5.9 10.339 3.1 0.0575 0.4 595 18 510 9
p2Bu_23 14.0 110 130 270 11.0 4.30 33.5 26.1 139.6 0.19 992 1 4.6704 5.0 0.3121 4.5 0.45 0.1084 1.3 0.5018 4.7 0.0751 6.1 3.204 4.5 0.1084 1.3 1751 78 1773 25
p2Bu_30 7.80 88.0 56.0 170 22.0 10.0 24.0 50.8 140.6 0.36 nd nd 0.7806 9.3 0.0978 7.6 0.41 0.0578 1.7 0.3649 33.3 0.0237 14.5 10.229 7.6 0.0578 1.7 601 46 524 37
2Bu_32 9.90 54.0 35.0 50.0 5.80 5.90 13.7 13.3 139.9 0.09 801 3 0.7487 5.2 0.0931 5.6 0.54 0.0584 0.7 0.2113 22.7 0.0269 5.1 10.742 5.6 0.0584 0.7 574 32 546 15
p2Bu_35/1 8.60 59.0 38.0 53.0 6.10 6.90 14.8 14.1 140.0 0.10 723 8 0.7295 5.2 0.0877 7.3 0.70 0.0598 2.1 0.2684 25.8 0.0252 16.0 11.405 7.3 0.0598 2.1 542 40 597 45
p2Bu_35/2 7.80 84.0 56.0 39.0 4.10 8.90 20.4 9.5 140.4 0.07 863 74 0.8119 24.6 0.0960 34.0 0.69 0.0606 6.9 0.1682 122.6 0.0356 36.3 10.420 34.0 0.0606 6.9 591 201 624 149
p3Bu_01/1 11.0 61.0 51.0 69.0 55.0 12.0 15.8 125.9 140.9 0.89 546 30 0.7773 8.6 0.0692 4.3 0.25 0.0839 9.0 0.4171 20.2 0.0128 21.3 14.460 4.3 0.0839 9.0 431 19 1290 176
p3Bu_01/2 4.60 15.0 11.0 17.0 11.0 2.10 3.8 25.3 139.2 0.18 nd nd 0.8730 17.3 0.0946 11.9 0.35 0.0646 19.5 0.3371 54.8 0.0198 24.3 10.569 11.9 0.0646 19.5 583 69 762 412
p3Bu_01/3 17.0 48.0 42.0 120 83.0 8.30 14.0 189.3 140.3 1.35 453 22 0.8695 6.4 0.0800 9.1 0.71 0.0814 10.4 0.9599 19.5 0.0218 15.0 12.506 9.1 0.0814 10.4 496 45 1232 204
p3Bu_03/1 nd 1.80 1.10 1.20 0.740 0.250 0.4 1.7 138.9 0.01 nd nd 0.9325 36.6 0.1145 39.4 0.54 0.0599 6.2 0.2290 15.0 0.0153 106.6 8.736 39.4 0.0599 6.2 699 276 599 135
p3Bu_03/2 4.20 0.780 0.51 0.57 0.390 0.110 0.2 0.9 138.9 0.01 40 11 0.9258 14.2 0.1104 13.4 0.47 0.0609 4.3 0.2333 6.9 0.0196 16.7 9.054 13.4 0.0609 4.3 675 90 636 92
p3Bu_04 4.00 0.980 0.67 0.50 0.350 0.150 0.2 0.8 138.9 0.01 nd nd 0.8442 21.7 0.0930 23.3 0.54 0.0646 9.0 0.1726 20.3 0.0140 70.5 10.749 23.3 0.0646 9.0 573 133 761 189
p3Bu_09/1 42.0 33.0 52.0 120 76.0 7.30 10.8 175.0 140.1 1.25 199 25 2.1793 196.9 0.1178 133.3 0.34 0.1021 96.8 0.7533 129.5 0.0158 695.3 8.488 133.3 0.1021 96.8 718 957 1663 1791
p3Bu_09/2 5.80 35.0 24.0 75.0 29.0 5.50 9.7 66.8 139.8 0.48 720 4 0.8187 4.0 0.0926 2.4 0.29 0.0645 3.6 0.9196 17.5 0.0279 4.4 10.799 2.4 0.0645 3.6 571 13 758 76
p3Bu_10 nd 16.0 10.0 30.0 12.0 2.50 4.4 26.7 139.3 0.19 nd nd 0.7826 1.9 0.0956 1.7 0.44 0.0592 0.6 0.6439 3.7 0.0284 2.2 10.459 1.7 0.0592 0.6 589 10 576 13
p3Bu_12 5.40 32.0 20.0 31.0 12.0 4.90 8.1 26.9 139.7 0.19 567 6 0.7593 11.7 0.0936 10.2 0.44 0.0588 3.2 0.4832 241.3 0.0287 19.4 10.679 10.2 0.0588 3.2 577 59 559 69
p3Bu_13/1 4.60 24.0 15.0 23.0 8.10 3.60 6.0 18.6 139.5 0.13 nd nd 0.7762 3.9 0.0943 4.9 0.63 0.0596 1.9 0.5016 75.8 0.0295 21.6 10.603 4.9 0.0596 1.9 581 28 589 41
p3Bu_13/2 6.80 15.0 9.90 8.10 6.40 2.30 3.6 14.7 139.3 0.11 346 61 0.8443 39.7 0.0908 21.5 0.27 0.0670 27.5 0.2070 122.8 0.0159 110.5 11.014 21.5 0.0670 27.5 560 120 838 573
p3Bu_14 4.00 16.0 9.80 15.0 5.90 2.40 4.0 13.4 139.3 0.10 119 15 0.7477 4.0 0.0892 4.6 0.58 0.0607 0.9 0.5905 20.3 0.0288 5.2 11.216 4.6 0.0607 0.9 551 25 630 20
p3Bu_15 5.30 2.10 1.60 3.20 1.70 0.320 0.6 4.0 138.9 0.03 52 12 0.9670 14.2 0.0905 13.8 0.49 0.0762 7.9 0.5176 12.7 0.0196 17.1 11.045 13.8 0.0762 7.9 559 77 1099 158

Batchelor RA and Bowden P, 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology 48: 43–55, DOI 10.1016/0009-2541(85)90034-8. Batchelor RA Bowden P 1985 Petrogenetic interpretation of granitoid rock series using multicationic parameters Chemical Geology 48 4355 10.1016/0009-2541(85)90034-8Open DOISearch in Google Scholar

Belka Z, Ahrendt H., Franke W and Wemmer K, 2000. The Baltica-Gondwana suture in central Europe: evidence from K/Ar ages of detrital muscovites. In: Franke W, Altherr R., Haak V. and Oncken O., eds., Orogenic processes: Quantification and modelling in the Variscan Belt of central Europe. Geological Society, London, Special Publications, 179: 87–102. Belka Z Ahrendt H. Franke W Wemmer K 2000 The Baltica-Gondwana suture in central Europe: evidence from K/Ar ages of detrital muscovites Franke W Altherr R Haak V. Oncken O. Orogenic processes: Quantification and modelling in the Variscan Belt of central Europe Geological Society London Special Publications 179 8710210.1144/GSL.SP.2000.179.01.07Search in Google Scholar

Bieda F, Geroch S, Koszarski L, Książkiewicz M and Żytko K, 1963. Stratigraphie des Karpates externes polonaises (Geological research in the Carpathians). Biuletyn Instytutu Geologicznego 181: 5–174. Bieda F Geroch S Koszarski L Książkiewicz M Żytko K 1963 Stratigraphie des Karpates externes polonaises (Geological research in the Carpathians) Biuletyn Instytutu Geologicznego 181 5174Search in Google Scholar

Budzyń B, Hetherington CJ, Williams ML, Jercinovic MJ, Dumond G and Michalik M, 2008. Application of electron probe microanalysis Th–U–total Pb geochronology to provenance studies of sedimentary rocks: An example from the Carpathian flysch. Chemical Geology 254: 148–163, DOI 10.1016/j.chemgeo.2008.04.015. Budzyń B Hetherington CJ Williams ML Jercinovic MJ Dumond G Michalik M 2008 Application of electron probe microanalysis Th–U–total Pb geochronology to provenance studies of sedimentary rocks: An example from the Carpathian flysch Chemical Geology 254 148163 10.1016/j.chemgeo.2008.04.015Open DOISearch in Google Scholar

Budzyń B, Dunkley DJ, Kusiak MA, Poprawa P, Malata T, Skiba M and Paszkowski M, 2011. SHRIMP U-Pb zircon chronology of the Polish Western Outer Carpathians source areas. Annales Societatis Geologorum Poloniae 81: 161–171. Budzyń B Dunkley DJ Kusiak MA Poprawa P Malata T Skiba M Paszkowski M 2011 SHRIMP U-Pb zircon chronology of the Polish Western Outer Carpathians source areas Annales Societatis Geologorum Poloniae 81 161171Search in Google Scholar

Buła Z, 2000. The Lower Palaeozoic of the Upper Silesia and West Małopolska (in Polish). Prace Państwowego Instytutu Geologicznego 171: 1–63. Buła Z 2000 The Lower Palaeozoic of the Upper Silesia and West Małopolska (in Polish) Prace Państwowego Instytutu Geologicznego 171 163Search in Google Scholar

Buła Z, Habryn R, Jachowicz-Zdanowska M and Żaba J, 2015. The Precambrian and Lower Paleozoic of the Brunovistulicum (eastern part of the Upper Silesian Block, southern Poland) – the state of the art. Geological Quarterly 59(1): 123–134. Buła Z Habryn R Jachowicz-Zdanowska M Żaba J 2015 The Precambrian and Lower Paleozoic of the Brunovistulicum (eastern part of the Upper Silesian Block, southern Poland) – the state of the art Geological Quarterly 591 12313410.7306/gq.1203Search in Google Scholar

Burda J and Klötzli U, 2011. Pre-Variscan evolution of the Western Tatra Mountains: new insights from U-Pb zircon dating. Mineralogy and Petrology 102: 99–115, DOI 10.1007/s00710-011-0176-4. Burda J Klötzli U 2011 Pre-Variscan evolution of the Western Tatra Mountains: new insights from U-Pb zircon dating Mineralogy and Petrology 102 99115 10.1007/s00710-011-0176-4Open DOISearch in Google Scholar

Burda J, Gawęda A and Klötzli U, 2013. Geochronology and petrogenesis of granitoid rocks from the Goryczkowa Unit, Tatra Mountains (Central Western Carpathians). Geologica Carpathica 64(6): 419– 435, DOI 10.2478/geoca-2013-0029. Burda J Gawęda A Klötzli U 2013 Geochronology and petrogenesis of granitoid rocks from the Goryczkowa Unit, Tatra Mountains (Central Western Carpathians) Geologica Carpathica 64 419– 435 10.2478/geoca-2013-0029Open DOISearch in Google Scholar

Burtanówna J, Konior K and Książkiewicz M, 1937. Carte géologique des Karpates de Silésie. PAU, Wydawnictwo Śląskie Kraków, 104pp (in Polish). Burtanówna J Konior K Książkiewicz M 1937 Carte géologique des Karpates de Silésie. PAU, Wydawnictwo Śląskie Kraków 104pp in PolishSearch in Google Scholar

Cieszkowski M, Ślączka A and Wdowiarz S, 1985. New data on structure of the flysch Carpathians. Przegląd Geologiczny 33: 313–333. Cieszkowski M Ślączka A Wdowiarz S 1985 New data on structure of the flysch Carpathians Przegląd Geologiczny 33 313333Search in Google Scholar

Cieszkowski M, Golonka J, Krobicki M, Ślączka A, Oszczypko N, Waśkowska A and Wendorff M, 2009. The Northern Carpathians plate tectonic evolutionary stages and origin of olistoliths and olistostromes. Geodynamica Acta 22(1–2): 1–26. Cieszkowski M Golonka J Krobicki M Ślączka A Oszczypko N Waśkowska A Wendorff M 2009 The Northern Carpathians plate tectonic evolutionary stages and origin of olistoliths and olistostromes Geodynamica Acta 221–2 12610.3166/ga.22.101-126Search in Google Scholar

Cieszkowski M, Golonka J, Ślączka A and Waśkowska A, 2012. Role of the olistostromes and olistoliths in tectonostratigraphic evolution of the Silesian Basin in the Outer West Carpathians. Tectono-physics 568–569: 248–265, DOI 10.1016/j.tecto.2012.01.030. Cieszkowski M Golonka J Ślączka A Waśkowska A 2012 Role of the olistostromes and olistoliths in tectonostratigraphic evolution of the Silesian Basin in the Outer West Carpathians Tectono-physics 568–569 248265 10.1016/j.tecto.2012.01.030Open DOISearch in Google Scholar

Corfu F, Hanchar JM, Hoskin PWO and Kinny PD, 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry 53: 469–500, DOI 10.2113/0530469. Corfu F Hanchar JM Hoskin PWO Kinny PD 2003 Atlas of zircon textures Reviews in Mineralogy and Geochemistry 53 469500 10.2113/0530469Open DOISearch in Google Scholar

De la Roche H, Leterrier J, Grandclaude P and Marchal M, 1980. A classification of volcanic and plutonic rocks using R1, R2-diagrams and major element analysis - its relationships with current nomenclature. Chemical Geology 29:183–210, DOI 10.1016/0009-2541(80)90020-0. De la Roche H Leterrier J Grandclaude P Marchal M 1980 A classification of volcanic and plutonic rocks using R1, R2-diagrams and major element analysis - its relationships with current nomenclature Chemical Geology 29183210 10.1016/0009-2541(80)90020-0Open DOISearch in Google Scholar

Dudek A, 1980. The crystalline basement block of the Outer Carpathians in Moravia: Bruno-Vistulicum. Rozpravy Česko-Slovenské Akademie Vĕd, Řada Matematicko-přírodních Vĕd 90: 1–85. Dudek A 1980 The crystalline basement block of the Outer Carpathians in Moravia: Bruno-Vistulicum Rozpravy Česko-Slovenské Akademie Vĕd, Řada Matematicko-přírodních Vĕd 90 185Search in Google Scholar

Finger F, Hanžl P, Pin C, Quadt A and Steyrer HP, 2000. The Brunovistulicum: Avalonian Precambrian at the eastern end of the Variscides. In: Franke W, Altherr R, Haak W, Oncken O and Tanner D., eds., Orogenic Processes: Quantification and Modelling in the Variscan Belt of Central Europe Geological Society of London, Special Publication 179: 103–112. Finger F Hanžl P Pin C Quadt A Steyrer HP 2000 The Brunovistulicum: Avalonian Precambrian at the eastern end of the Variscides Franke W Altherr R Haak W Oncken O Tanner D Orogenic Processes: Quantification and Modelling in the Variscan Belt of Central Europe Geological Society of London Special Publication 179 10311210.1144/GSL.SP.2000.179.01.08Search in Google Scholar

Frost BR and Frost CD, 2008. A Geochemical Classification for Feldspathic Igneous Rocks Journal of Petrology 49: 1955–1969, DOI 10.1093/petrology/egn054. Frost BR Frost CD 2008 A Geochemical Classification for Feldspathic Igneous Rocks Journal of Petrology 49 19551969 10.1093/petrology/egn054Open DOISearch in Google Scholar

Golonka J, Aleksandrowski P, Aubrecht M, Chowaniec J, Chrustek M, Cieszkowski M, Florek R, Gawęda A, Jarosiński M, Kępińska B, Krobicki M, Lefeld J, Lewandowski M, Marko F, Michalik M, Oszczypko N, Picha F, Potfaj M, Słaby E, Ślączka A, Stefaniuk M, Uchman A and Żelaźniewicz A, 2005. Orava Deep Drilling Project and the Post Paleogene tectonics of the Carpathians. Annales Societatis Geologorum Poloniae 75: 211–248. Golonka J Aleksandrowski P Aubrecht M Chowaniec J Chrustek M Cieszkowski M Florek R Gawęda A Jarosiński M Kępińska B Krobicki M Lefeld J Lewandowski M Marko F Michalik M Oszczypko N Picha F Potfaj M Słaby E Ślączka A Stefaniuk M Uchman A Żelaźniewicz A 2005 Orava Deep Drilling Project and the Post Paleogene tectonics of the Carpathians Annales Societatis Geologorum Poloniae 75 211248Search in Google Scholar

Golonka J, Krobicki M, Waśkowska-Oliwa A, Vašiček Z and Skupien P, 2008. Główne elementy paleogeograficzne Karpat Zewnętrznych w późnej jurze i wczesnej kredzie (Main palaeogeographical elements of West Outer Carpathians during Late Jurassic and Early Crataceous times). Geologia 34(3): 61–72. Golonka J Krobicki M Waśkowska-Oliwa A Vašiček Z Skupien P 2008 Główne elementy paleogeograficzne Karpat Zewnętrznych w późnej jurze i wczesnej kredzie (Main palaeogeographical elements of West Outer Carpathians during Late Jurassic and Early Crataceous times) Geologia 343 6172Search in Google Scholar

Golonka J, Pietsch K, Marzec P, Stefaniuk M, Waśkowska A and Cieszkowski M, 2009. Tectonics of the western part of the Polish Outer Carpathians. Geodynamica Acta 22(1–2): 81–97. Golonka J Pietsch K Marzec P Stefaniuk M Waśkowska A Cieszkowski M 2009 Tectonics of the western part of the Polish Outer Carpathians Geodynamica Acta 221–2 819710.3166/ga.22.127-143Search in Google Scholar

Haber M and Hałas S, 2001. Granit z Bugaja ma 485 milionów lat. (Granite from Bugaj is 485 million years old (southern Poland). Przegląd Geologiczny 49(7): 613–615 (in Polish). Haber M Hałas S 2001 Granit z Bugaja ma 485 milionów lat. (Granite from Bugaj is 485 million years old (southern Poland) Przegląd Geologiczny 497 613615 (in Polish)Search in Google Scholar

Hanžl P, Schnitter F, Finger F, Krejči O, Buriankovà K and Strànik, Z, 2000. Petrography, geochemistry and age of granitic pebbles from the Moravian part of the Carpathian Flysch. Polskie Towarzystwo Mineralogiczne — Prace Specjalne 17: 156–158. Hanžl P Schnitter F Finger F Krejči O Buriankovà K Strànik Z 2000 Petrography, geochemistry and age of granitic pebbles from the Moravian part of the Carpathian Flysch Polskie Towarzystwo Mineralogiczne — Prace Specjalne 17 156158Search in Google Scholar

Klötzli U, Klötzli E, Günes Z and Košler J, 2009. External accuracy of laser ablation U-Pb zircon dating: results from a test using five different reference zircons. Geostandards and Geoanalytical Research 33(1): 5–15. Klötzli U Klötzli E Günes Z Košler J 2009 External accuracy of laser ablation U-Pb zircon dating: results from a test using five different reference zircons Geostandards and Geoanalytical Research 331 51510.1111/j.1751-908X.2009.00921.xSearch in Google Scholar

Košler J, Forst L and Sláma J, 2008. Lamdate and Lamtool: spreadsheet-based data reduction for laser ablation ICP-MS. In: Sylvester P, ed., Laser Ablation ICP-MS in the Earth sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course 40: 315–317. Košler J Forst L Sláma J 2008 Lamdate and Lamtool: spreadsheet-based data reduction for laser ablation ICP-MS Sylvester P Laser Ablation ICP-MS in the Earth sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course 40 315317Search in Google Scholar

Książkiewicz M, 1953. Flysh Carpathians beetwen the Olza and Dunajec rivers In: Regional geology of Poland, vol. 1: Carpathians. Part 1: Tectonics. Tome 2: Carpathians. PTG, Kraków: 305–361 (in Polish). Książkiewicz M 1953 Flysh Carpathians beetwen the Olza and Dunajec rivers Regional geology of Poland vol. 1 Carpathians. Part 1: Tectonics. Tome 2: Carpathians PTG, Kraków 305361 in PolishSearch in Google Scholar

Książkiewicz M, 1960. Pre-orogenic sedimentation in the Carpathian geosyncline. Geologische Rundschau 50: 8–31 Książkiewicz M 1960 Pre-orogenic sedimentation in the Carpathian geosyncline Geologische Rundschau 50 83110.1007/BF01786823Search in Google Scholar

Książkiewicz M (ed.), 1962. Geological Atlas of Poland. Stratigraphic and facial problems Fasc. 13 — Cretaceous and Tertiary in the Polish External Carpathians, 1:600 000. Państwowy Instytut Geologiczny Warszawa. Książkiewicz M 1962 Geological Atlas of Poland. Stratigraphic and facial problems Fasc. 13 — Cretaceous and Tertiary in the Polish External Carpathians 1600 Państwowy Instytut Geologiczny WarszawaSearch in Google Scholar

Książkiewicz M, 1965. Les cordillàres dans les mers Crétacées et Paléogànes des Carpates du Nord. Bulletin de la Societé Géologique de France 7: 443–455 (in French). Książkiewicz M 1965 Les cordillàres dans les mers Crétacées et Paléogànes des Carpates du Nord Bulletin de la Societé Géologique de France 7 443455 (in French)10.2113/gssgfbull.S7-VII.3.443Search in Google Scholar

Książkiewicz M, 1972. Budowa geologiczna Polski, t. IV, Tektonika, cz. 3. Karpaty. (Geology of Poland, vol.4 Tectonics, part 3 Carpathians).Wydawnictwa Geologiczne, Warszawa: 228 pp. (in Polish). Książkiewicz M 1972 Budowa geologiczna Polski, t. IV, Tektonika, cz. 3. Karpaty. (Geology of Poland, vol.4 Tectonics, part 3 Carpathians) Wydawnictwa Geologiczne Warszawa 228Search in Google Scholar

Książkiewicz M, 1977. The Tectonics of the Carpathians. In: Geology of Poland, vol. 4.Tectonics. The Alpine Tectonic Epoch. Geological Institute, Warsaw: 476–608. Książkiewicz M 1977 The Tectonics of the Carpathians Geology of Poland vol. 4 Tectonics. The Alpine Tectonic Epoch Geological Institute Warsaw 476608Search in Google Scholar

Ludwig KR, 2012. User's Manual for Isoplot Version 3.75–4.15: A Geochronological Toolkit for Microsoft Excel. 5. Berkley Geochronological Centre, Special Publication. Ludwig KR 2012 User's Manual for Isoplot Version 3.75–4.15: A Geochronological Toolkit for Microsoft Excel. 5. Berkley Geochronological Centre Special PublicationSearch in Google Scholar

Malik K, 1978. Wstępne wyniki badań nad wapieniami egzotykowymi z warstw grodziskich (Preliminary results of studies on exotic limestones from the Grodzisko beds). Przegląd Geologiczny 26 (3): 183–184 (in Polish). Malik K 1978 Wstępne wyniki badań nad wapieniami egzotykowymi z warstw grodziskich (Preliminary results of studies on exotic limestones from the Grodzisko beds) Przegląd Geologiczny 26 3 183184 (in Polish)Search in Google Scholar

Michalik M, Budzyń B and Gehrels G, 2006. Cadomian granitoid clasts derived from the Silesian Ridge (results of the study of gneiss pebbles from Gródek at the Jezioro Rożnowskie Lake). Mineralogia Polonica — Special Papers 29: 168–171. Michalik M Budzyń B Gehrels G 2006 Cadomian granitoid clasts derived from the Silesian Ridge (results of the study of gneiss pebbles from Gródek at the Jezioro Rożnowskie Lake) Mineralogia Polonica — Special Papers 29 168171Search in Google Scholar

Middlemost EAK, 1985. Magmas and magmatic rocks. An introduction to igneous petrology. Longman Group Ltd., London, New York. Middlemost EAK 1985 Magmas and magmatic rocks. An introduction to igneous petrology Longman Group Ltd London, New YorkSearch in Google Scholar

Nawrocki J, Boguckij A and Katinas V, 2004. New Late Vendian palaeogeography of Baltica and the TESZ. Geological Quarterly 48(4): 309–316. Nawrocki J Boguckij A Katinas V 2004 New Late Vendian palaeogeography of Baltica and the TESZ Geological Quarterly 484 309316Search in Google Scholar

Olszewska B and Wieczorek J, 2001. Jurassic sediments and microfossils of the Andrychów Klippes (Outer Western Carpathians). Geologia Carpathica 52/4: 217–228. Olszewska B Wieczorek J 2001 Jurassic sediments and microfossils of the Andrychów Klippes (Outer Western Carpathians) Geologia Carpathica 524 217228Search in Google Scholar

Oszczypko N, 1975. Exotic rocks in the Palaeogene of the Magura nappe between the Dunajec and Poprad Rivers (Carpathians, Poland). Annales de la Société Géologique de Pologne 45(3–4): 403– 431 (in Polish). Oszczypko N 1975 Exotic rocks in the Palaeogene of the Magura nappe between the Dunajec and Poprad Rivers (Carpathians, Poland) Annales de la Société Géologique de Pologne 453–4 403– 431 in PolishSearch in Google Scholar

Oszczypko N, 1998. The Western Carpathian Foredeep – Development of the foreland basin in front of the accretionary wedge and its burial history (Poland). Geologica Carpathica 49: 1–18. Oszczypko N 1998 The Western Carpathian Foredeep – Development of the foreland basin in front of the accretionary wedge and its burial history (Poland) Geologica Carpathica 49 118Search in Google Scholar

Oszczypko N, 2004. The structural position and tectonosedimentary evolution of the Polish Outer Carpathians. Przegląd Geologiczny 52: 780–791. Oszczypko N 2004 The structural position and tectonosedimentary evolution of the Polish Outer Carpathians Przegląd Geologiczny 52 780791Search in Google Scholar

Oszczypko N, 2006. Powstanie i rozwój polskiej części zapadliska przedkarpackiego (Development of the Polish sector of the Carpathian Foredeep). Przegląd Geologiczny 54(5): 396–403. Oszczypko N 2006 Powstanie i rozwój polskiej części zapadliska przedkarpackiego (Development of the Polish sector of the Carpathian Foredeep) Przegląd Geologiczny 545 396403Search in Google Scholar

Oszczypko N and Ślączka A, 1985. An attempt to palinspastic reconstruction of Neogene basins of the Carpathian Foredeep. Annales Societatis Geologorum Poloniae 55(1–2): 55–75. Oszczypko N Ślączka A 1985 An attempt to palinspastic reconstruction of Neogene basins of the Carpathian Foredeep Annales Societatis Geologorum Poloniae 551–2 5575Search in Google Scholar

Oszczypko N and Oszczypko-Clowes M, 2003. The Aquitanian marine deposits in the basement of the Polish Western Carpathians and its paleogeographical and paleotectonic implications. Acta Geologica Polonica 53(2): 1–22. Oszczypko N Oszczypko-Clowes M 2003 The Aquitanian marine deposits in the basement of the Polish Western Carpathians and its paleogeographical and paleotectonic implications Acta Geologica Polonica 532 122Search in Google Scholar

Oszczypko N, Oszczypko-Clowes M and Salata D, 2006. Egzotyki strefy krynickiej (płaszczowina magurska) magurska ich znaczenie paleogeograficzne (Exotic rocks of the Krynica Zone (Magura nappe) and their palaeogeographic significance). Geologia 32(1): 21–45 (in Polish). Oszczypko N Oszczypko-Clowes M Salata D 2006 Egzotyki strefy krynickiej (płaszczowina magurska) magurska ich znaczenie paleogeograficzne (Exotic rocks of the Krynica Zone (Magura nappe) and their palaeogeographic significance) Geologia 321 2145 (in Polish)Search in Google Scholar

Oszczypko N, Salata D, Konečny P, 2016. Age and provenance of mica-schist pebbles from the Eocene conglomerates of the Tylicz and Krynica Zone (Magura Nappe, Outer Flysch Carpathians). Geologia Carpathica 67: 260–274. Oszczypko N Salata D Konečny P 2016 Age and provenance of mica-schist pebbles from the Eocene conglomerates of the Tylicz and Krynica Zone (Magura Nappe, Outer Flysch Carpathians) Geologia Carpathica 67 26027410.1515/geoca-2016-0017Search in Google Scholar

Poprawa P, Malata T and Oszczypko N, 2002. Ewolucja tektoniczna basenów sedymentacyjnych polskiej części Karpat zewnętrznych w świetle analizy subsydencji (Tectonic evolution of the Polish part of Outer Carpathian's sedimentary basins - constraints from subsidence analysis). Przegląd Geologiczny 50: 1092–1108 (in Polish). Poprawa P Malata T Oszczypko N 2002 Ewolucja tektoniczna basenów sedymentacyjnych polskiej części Karpat zewnętrznych w świetle analizy subsydencji (Tectonic evolution of the Polish part of Outer Carpathian's sedimentary basins - constraints from subsidence analysis) Przegląd Geologiczny 50 10921108 (in Polish)Search in Google Scholar

Poprawa P, Malata T, Pécskay Z, Banaś M, Skulich J, Paszkowski M and Kusiak MA, 2004. Geochronology of crystalline basement of the Western Outer Carpathians' sediment source areas. Polskie Towarzystwo Mineralogiczne — Prace Specjalne 24: 329–332. Poprawa P Malata T Pécskay Z Banaś M Skulich J Paszkowski M Kusiak MA 2004 Geochronology of crystalline basement of the Western Outer Carpathians' sediment source areas Polskie Towarzystwo Mineralogiczne — Prace Specjalne 24 329332Search in Google Scholar

Poprawa P, Kusiak MA, Malata T, Paszkowski M, Pécskay Z and Skulich, J, 2005. Th–U–Pb chemical dating of monazite and K/Ar dating of mica combined: preliminary study of “exotic” crystalline clasts from the Western Outer Carpathian flysch (Poland). Polskie Towarzystwo Mineralogiczne — Prace Specjalne 25: 345–351. Poprawa P Kusiak MA Malata T Paszkowski M Pécskay Z Skulich J. 2005 Th–U–Pb chemical dating of monazite and K/Ar dating of mica combined: preliminary study of “exotic” crystalline clasts from the Western Outer Carpathian flysch (Poland) Polskie Towarzystwo Mineralogiczne — Prace Specjalne 25 345351Search in Google Scholar

Poprawa P, Malata T, Pécskay Z, Kusiak MA, Banaś M and Paszkowski M, 2006. Geochronology of the crystalline basement of the Western Outer Carpathians' source areas — constraints from the K/Ar dating of mica and Th–U–Pb chemical dating of monazite from the crystalline ‘exotic’ pebbles. Geolines 20: 110–112. Poprawa P Malata T Pécskay Z Kusiak MA Banaś M Paszkowski M 2006 Geochronology of the crystalline basement of the Western Outer Carpathians' source areas — constraints from the K/Ar dating of mica and Th–U–Pb chemical dating of monazite from the crystalline ‘exotic’ pebbles Geolines 20 110112Search in Google Scholar

Poprawa P and Malata T, 2006. Model of Late Jurassic to Early Miocene tectonic evolution of the Western Outer Carpathians. Przegląd Geologiczny 54: 1066–1080 (in Polish). Poprawa P Malata T 2006 Model of Late Jurassic to Early Miocene tectonic evolution of the Western Outer Carpathians Przegląd Geologiczny 54 10661080 (in Polish)Search in Google Scholar

Pupin JP, 1980. Zircon and Granite Petrology. Contributions to Mineralogy and Petrology 73: 207–220, DOI 10.1007/BF00381441. Pupin JP 1980 Zircon and Granite Petrology Contributions to Mineralogy and Petrology 73 207220 10.1007/BF00381441Open DOISearch in Google Scholar

Salata D and Oszczypko N, 2010. Preliminary results of provenance analyses of exotic magmatic and metamorphic rock pebbles from the Eocene flysch deposits of the Magura Nappe (Krynica facies zone, Polish Outer Carpathians). In: Christofidis G, Kantiranis N, Kostopoulos DN and Chatzipetros AA, eds., Proceedings of the XIX CBGA Congress, Thessaloniki, Greece Scientific Annals, School of Geology, Aristotle University of Thessaloniki, special volume 100: 241–249. Salata D Oszczypko N 2010 Preliminary results of provenance analyses of exotic magmatic and metamorphic rock pebbles from the Eocene flysch deposits of the Magura Nappe (Krynica facies zone, Polish Outer Carpathians) Christofidis G Kantiranis N Kostopoulos DN Chatzipetros AA Proceedings of the XIX CBGA Congress, Thessaloniki, Greece Scientific Annals, School of Geology, Aristotle University of Thessaloniki special volume 100 241249Search in Google Scholar

Sikora WJ, 1976. Kordyliery Karpat Zachodnich w świetle tektoniki płyt litosfery (Cordilleres of the Western Carpathians in the light of the plate tectonics theory). Przegląd Geologiczny 6: 336–349 (in Polish). Sikora WJ 1976 Kordyliery Karpat Zachodnich w świetle tektoniki płyt litosfery (Cordilleres of the Western Carpathians in the light of the plate tectonics theory) Przegląd Geologiczny 6 336349 (in Polish)Search in Google Scholar

Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM., Horstwood MSW, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ, 2008. Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249: 1–35, DOI 10.1016/j.chemgeo.2007.11.005. Sláma J Košler J Condon DJ Crowley JL Gerdes A Hanchar JM. Horstwood MSW Morris GA Nasdala L Norberg N Schaltegger U Schoene B Tubrett MN Whitehouse MJ 2008 Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis Chemical Geology 249 135 10.1016/j.chemgeo.2007.11.005Open DOISearch in Google Scholar

Ślączka A, 1986. Europejskie spotkania sedymentologów (European sedimentologists' meetings). Przegląd Geologiczny 34(4): 231. Ślączka A 1986 Europejskie spotkania sedymentologów (European sedimentologists' meetings) Przegląd Geologiczny 344 231Search in Google Scholar

Ślączka A and Kaminski MA, 1998. A Guidebook to Excursions in the Polish Flysch Carpathians. Grzybowski Foundation Special Publication 6: 171 pp. Ślączka A Kaminski MA 1998 A Guidebook to Excursions in the Polish Flysch Carpathians Grzybowski Foundation Special Publication 6 171Search in Google Scholar

Ślączka A, Krugłov S, Golonka J, Oszczypko N and Popadyuk I, 2006. Geology and Hydrocarbon Resources of the Outer Carpathians, Poland, Slovakia, and Ukraine: General Geology. In: Golonka J and Picha FJ, eds., The Carpathians and their foreland: Geology and hydrocarbon resources. AAPG Memoir 84: 221–259. Ślączka A Krugłov S Golonka J Oszczypko N Popadyuk I 2006 Geology and Hydrocarbon Resources of the Outer Carpathians, Poland, Slovakia, and Ukraine: General Geology Golonka J Picha FJ The Carpathians and their foreland: Geology and hydrocarbon resources AAPG Memoir 84 22125910.1306/985610M843070Search in Google Scholar

Sun SS and McDonough WF, 1989. Chemical and isotopical systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the Oceanic Basins. Geological Society of London Special Pubplications 42: 313–345. Sun SS McDonough WF 1989 Chemical and isotopical systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the Oceanic Basins Geological Society of London Special Pubplications 42 31334510.1144/GSL.SP.1989.042.01.19Search in Google Scholar

Sylvester PJ and Ghaderi M, 1997. Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chemical Geology 141: 49–65, DOI 10.1016/S0009-2541(97)00057-0. Sylvester PJ Ghaderi M 1997 Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard Chemical Geology 141 4965 10.1016/S0009-2541(97)00057-0Open DOISearch in Google Scholar

Thöni M, Miller C, Zanetti A, Habler G and Goessler W, 2008. Sm–Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICPMS and EPMA data constrain multiple Permian-Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chemical Geology 254: 216–237, DOI 10.1016/j.chemgeo.2008.03.008. Thöni M Miller C Zanetti A Habler G Goessler W 2008 Sm–Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICPMS and EPMA data constrain multiple Permian-Triassic pegmatite emplacement in the Koralpe, Eastern Alps Chemical Geology 254 216237 10.1016/j.chemgeo.2008.03.008Open DOISearch in Google Scholar

Unrug R, 1963. Istebna beds - a fluxoturbidity formation in the Carpathian Flysch. Rocznik Polskiego Towarzystwa Geologicznego 33: 49–92. Unrug R 1963 Istebna beds - a fluxoturbidity formation in the Carpathian Flysch Rocznik Polskiego Towarzystwa Geologicznego 33 4992Search in Google Scholar

Unrug R, 1968. Kordyliera śląska jako obszar źródłowy materiału klastycznego piaskowców fliszowych Beskidu Śląskiego i Beskidu Wysokiego (Polskie Karpaty zachodnie) (The Silesian cordillera as the source of clastic material of the Flysch sandstones of the Beskid Śląski and Beskid Wysoki ranges (Polish Western Carpathians). Rocznik Polskiego Towarzystwa Geologicznego 38: 81– 164. Unrug R 1968 Kordyliera śląska jako obszar źródłowy materiału klastycznego piaskowców fliszowych Beskidu Śląskiego i Beskidu Wysokiego (Polskie Karpaty zachodnie) (The Silesian cordillera as the source of clastic material of the Flysch sandstones of the Beskid Śląski and Beskid Wysoki ranges (Polish Western Carpathians) Rocznik Polskiego Towarzystwa Geologicznego 38 81– 164Search in Google Scholar

Watson TM and Harrison EB, 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64: 295–304, DOI 10.1016/0012-821X(83)90211-X. Watson TM Harrison EB 1983 Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types Earth and Planetary Science Letters 64 295304 10.1016/0012-821X(83)90211-XOpen DOISearch in Google Scholar

Wieser T, 1948. Crystalline exotic blocks in the Silesian Cretaceous of the Wadowice area (Pl. I-II). Annales Societatis Geologorum Poloniae 18: 36–150 (in Polish). Wieser T 1948 Crystalline exotic blocks in the Silesian Cretaceous of the Wadowice area (Pl. I-II) Annales Societatis Geologorum Poloniae 18 36150 (in Polish)Search in Google Scholar

Wieser T, 1949. Egzotyki krystaliczne w kredzie śląskiej okolic Wadowic (Crystalline exotic blocks in the Silesian Cretaceous of the Wadowice area). Rocznik Polskiego Towarzystwa Geologicznego 18: 36–105 (in Polish). Wieser T 1949 Egzotyki krystaliczne w kredzie śląskiej okolic Wadowic (Crystalline exotic blocks in the Silesian Cretaceous of the Wadowice area) Rocznik Polskiego Towarzystwa Geologicznego 18 36105 (in Polish)Search in Google Scholar

Wieser T, 1985. Some remarks on the sedimentation, composition and provenance of exotic bearing conglomerates in the western Polish Carpathians Flysch formations. 13th Congress Carpatho-Balkan Geological Association Guide 1. Geological Institute, Kraków: 57–68. Wieser T 1985 Some remarks on the sedimentation, composition and provenance of exotic bearing conglomerates in the western Polish Carpathians Flysch formations 13th Congress Carpatho-Balkan Geological Association Guide 1 Geological Institute Kraków 5768Search in Google Scholar

Żelaźniewicz A, Buła Z, Fanning M, Seghedi A and Żaba J, 2009. More evidence on Neoproterozoic terranes in Southern Poland and south eastern Romania. Geological Quarterly 58(1): 93–124. Żelaźniewicz A Buła Z Fanning M Seghedi A Żaba J 2009 More evidence on Neoproterozoic terranes in Southern Poland and south eastern Romania Geological Quarterly 581 93124Search in Google Scholar

Żelaźniewicz A, Aleksandrowski P, Buła Z, Karnkowski PH, Konon A, Oszczypko N, Ślączka A, Żaba J and Żytko K, 2011. Regionalizacja tektoniczna Polski (Tectonic regionalization of Poland). Komitet Nauk Geologicznych PAN, Wrocław: 59 pp (in Polish). Żelaźniewicz A Aleksandrowski P Buła Z Karnkowski PH Konon A Oszczypko N Ślączka A Żaba J Żytko K 2011 Regionalizacja tektoniczna Polski (Tectonic regionalization of Poland) Komitet Nauk Geologicznych PAN Wrocław 59 pp (in Polish)Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo