1. bookVolume 19 (2016): Issue 2 (December 2016)
Journal Details
License
Format
Journal
eISSN
1027-5207
First Published
11 Dec 2014
Publication timeframe
2 times per year
Languages
English
access type Open Access

Learner Attrition in an Advanced Vocational Online Training: The Role of Computer Attitude, Computer Anxiety, and Online Learning Experience

Published Online: 06 Apr 2017
Volume & Issue: Volume 19 (2016) - Issue 2 (December 2016)
Page range: 1 - 14
Journal Details
License
Format
Journal
eISSN
1027-5207
First Published
11 Dec 2014
Publication timeframe
2 times per year
Languages
English
Abstract

Online learning has gained importance in education over the last 20 years, but the well-known problem of high dropout rates still persists. According to the multi-dimensional learning tasks model, the cognitive (over)load of learners is essential to attrition when dealing with five challenges (e.g. technology, user interface) of an online training (Tyler-Smith, 2006). The experienced load might depend on learner characteristics. The study explored the extent that learners dropping out from a vocational video-based online training about media design for employees of micro, small and medium-sized enterprises differ from working learners’ online learning experience, computer attitude, and computer anxiety. The data were collected from 72 of 128 registered employees who completed a questionnaire before starting the course to analyze differences between the dropout group (submitted no solutions to online training tasks; n = 19) and the active learner group (submitted at least one of 13 task solutions; n = 53). No differences were found in online learning experience, but the dropout group reported more negative attitudes towards computers and a higher level of computer anxiety than the active learner group.

Keywords

1. Allen, I. E., & Seaman, J. (2010). Learning on Demand. Online Education in the United States, 2009. Babson Park, MA: Babson Research Group.Search in Google Scholar

2. Allen, I. E., & Seaman, J. (2015). Grade level: Tracking online education in the United States. Babson Park, MA: Babson Research Group.Search in Google Scholar

3. Ajzen, I. (1991). The theory of planned behaviour. Organizational Behavior and Human Decision Processes, 50, 179-211.10.1016/0749-5978(91)90020-TSearch in Google Scholar

4. Bernard, R. M., Abrami, P. C., Lou, Y., Borokhovski, E., Wade, A., Wozney, L., Wallet, P. A., Fiset, M., & Euan, B. (2004a). How does distance education compare with classroom instruction? A meta-analysis of the empirical literature. Review of Educational Research, 74(3), 379-439.10.3102/00346543074003379Search in Google Scholar

5. Bernard, R. M., Brauer, A., Abrami, P. C., & Surkes, M. (2004b). The development of a questionnaire for predicting online learning achievement. Distance Education, 25(1), 31-47.10.1080/0158791042000212440Search in Google Scholar

6. Dodd, C., Kirby, D., Seifert, T., & Sharpe, D. (2009). The impact of high school distance e-learning experience on rural students’ university achievement and persistence. Online Journal of Distance Learning Administration, 12(1). Retrieved from http://www.westga.edu/~distance/ojdla/spring121/dodd121.htmlSearch in Google Scholar

7. Elis, P. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge: Cambridge University Press.10.1017/CBO9780511761676Search in Google Scholar

8. Fritsch, H. & Ströhlein, G. (1988). Mentor support and academic achievement. Open Learning, 3(2), 27-32.10.1080/0268051880030206Search in Google Scholar

9. Gagné, R. M., Briggs, L. J., & Wager, W. W. (1992). Principles of instructional design. Belmont, CA: Wadsworth/Thomson Learning.Search in Google Scholar

10. Gazza, E. A., & Hunker, D. F. (2014). Facilitating student retention in online graduate nursing education programs: A review of the literature. Nurse Education Today, 34(7), 1125-1129.10.1016/j.nedt.2014.01.010Search in Google Scholar

11. Grau-Valldosera, J., & Minguillón, J. (2014). Rethinking dropout in online higher education: The case of the Universitat Oberta de Catalunya. The International Review of Research in Open and Distributed Learning, 15(1), 290-308.10.19173/irrodl.v15i1.1628Search in Google Scholar

12. Hauser, R., Paul, R., & Bradley, J. (2012). Computer self-efficacy, anxiety, and learning in online versus face to face medium. Journal of Information Technology Education: Research, 11, 141-154.10.28945/1633Search in Google Scholar

13. Hachey, A. C., Wladis, C. W., & Conway, K. M. (2014). Do prior online course outcomes provide more information than G.P.A. alone in predicting subsequent online course grades and retention? An observational study at an urban community college. Computers & Education, 72, 59-67.10.1016/j.compedu.2013.10.012Search in Google Scholar

14. Herbert, M. (2006). Staying the course: A study in online student satisfaction and retention. Online Journal of Distance Learning Administration, 9(4). Retrieved March 3, 2016, from http://www.westga.edu/~distance/ojdla/winter94/herbert94.htmSearch in Google Scholar

15. Kember, D. (1989). A longitudinal-process model of drop-out from distance education. Journal of Higher Education, 60(3), 278-301.10.2307/1982251Search in Google Scholar

16. Kranzow, J. (2013). Faculty leadership in online education: Structuring courses to impact student satisfaction and persistence. Journal of Online Learning and Teaching, 9(1), 131-139.Search in Google Scholar

17. Lakhal, S., & Bazinet, N. (2015). Technological factors explaining student dropout from online courses in higher education: A review. In S. Carliner, C. Fulford & N. Ostashewski (Eds.), Proceedings of EdMedia: World Conference on Educational Media and Technology 2015 (pp. 1806-1811). Chesapeake, VA: AACE. Retrieved from http://www.editlib.org/p/151456/Search in Google Scholar

18. Lee, Y., & Choi, J. (2011). A review of online course dropout research: Implications for practice and future research. Educational Technology Research and Development, 59(5), 593-618.10.1007/s11423-010-9177-ySearch in Google Scholar

19. Levy, Y. (2007). Comparing dropouts and persistence in e-learning courses. Computers & Education, 48(2), 185-204.10.1016/j.compedu.2004.12.004Search in Google Scholar

20. Long, L., Dubois, C., & Faley, R. (2009). A case study analysis of factors that influence attrition rates in voluntary online training programs. International Journal on E-Learning, 8(3), 347-359.Search in Google Scholar

21. Myers, M. P., & Schiltz, P. M. (2012). Use of Elluminate in online teaching of statistics in the health sciences. Journal of Research in Innovative Teaching, 5(1), 53-62.Search in Google Scholar

22. Park, J. (2007). Factors related to learner dropout in online learning. In F.M. Nafukho, T.H. Chermack & C.M. Graham (Eds.), Proceedings of the 2007 Academy of Human Resource Development Annual Conference (pp. 25-1-25-8). Indianapolis, IN: AHRD.Search in Google Scholar

23. Park, J.-H. & Choi, H.J. (2009). Factors influencing adult learners’ decision to drop out or persist in online learning. Educational Technology & Society, 12, 207-217. Search in Google Scholar

24. Reinmann, G., & Mandl, H. (2006). Unterrichten und Lernumgebungen gestalten. In A. Krapp & B. Weidenmann (Eds.), Pädagogische Psychologie. Ein Lehrbuch (pp. 613-658). Weinheim: Beltz.Search in Google Scholar

25. Richter, T., Naumann, J., & Groeben, N. (2000). Attitudes toward the computer: Construct validation of an instrument with scales differentiated by content. Computers in Human Behavior, 16, 473-491.10.1016/S0747-5632(00)00025-XSearch in Google Scholar

26. Richter, T., Naumann, J., & Horz, H. (2010). Eine revidierte Fassung des Inventars zur Computerbildung (INCOBI-R). Zeitschrift für Pädagogische Psychologie, 24(1), 23-37.10.1024/1010-0652/a000002Search in Google Scholar

27. Rovai, A. P. (2003). In search of higher persistence rates in distance education online programs. The Internet & Higher Education, 6(1), 1-16.10.1016/S1096-7516(02)00158-6Search in Google Scholar

28. Rowntree, D. (1998). Teaching through self-instruction: How to develop open learning materials. London: Routledge.Search in Google Scholar

29. Saadé, R. G., & Kira, D. (2009). Computer anxiety in e-learning: The effect of computer selfefficacy. Journal of Information Technology Education, 8, 177-191.10.28945/166Search in Google Scholar

30. Sam, H. K., Othman, A. E. A., & Nordin, Z. S. (2005). Computer self-efficacy, computer anxiety, and attitudes toward the internet: A study among undergraduates in Unimas. Educational Technology & Society, 8, 205-219.Search in Google Scholar

31. Stiller, K. D. (2009). Mono- und bimodale Textpräsentationen zu Bildern in Hypermedia- Systemen. Psychologie in Erziehung und Unterricht, 56, 49-63.Search in Google Scholar

32. Stiller, K. D. (2015). Linear vs. pictorial access to on-screen text and computer attitude. In S. Carliner, C. Fulford & N. Ostashewski (Eds.), Proceedings of EdMedia: World Conference on Educational Media and Technology 2015 (pp. 158-167). Chesapeake, VA: AACE. Retrieved from http://www.editlib.org/p/151412/Search in Google Scholar

33. Stiller, K. D., & Bachmaier, R. (2014). NiceDesign4SME: A video-based online training course. In J. Viteli & M. Leikomaa (Eds.), Proceedings of EdMedia: World Conference on Educational Media and Technology 2014 (pp. 373-383). Chesapeake, VA: AACE. Retrieved from http://www.editlib.org/p/147526Search in Google Scholar

34. Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22, 123-138.10.1007/s10648-010-9128-5Search in Google Scholar

35. Tinto, V. (1993). Leaving college: Rethinking the causes and cures of student attrition. Chicago: The University of Chicago Press.Search in Google Scholar

36. Tyler-Smith, K. (2006). Early attrition among first time eLearners: A review of factors that contribute to drop-out, withdrawal and non-completion rates of adult learners undertaking eLearning programmes. Journal of Online Learning and Teaching, 2(2), 73-85.Search in Google Scholar

37. U.S. Department of Education (2010). Evaluation of evidence-based practices in online learning: A metaanalysis and review of online learning studies. Retrieved January 19, 2016, from http://www2.ed.gov/rschstat/eval/tech/evidence-based-practices/finalreport.pdfSearch in Google Scholar

38. Xenos, M., Pierrakeas, C., & Pintelas, P. (2002). A survey on student dropout rates and dropout causes concerning the students in the course of informatics of the Hellenic Open University. Computers & Education, 39(4), 361-377. 10.1016/S0360-1315(02)00072-6Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo