1. bookVolume 50 (2016): Issue 2 (April 2016)
Journal Details
License
Format
Journal
eISSN
1336-0329
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
access type Open Access

Progress in micro RNA focused research in endocrinology

Published Online: 18 May 2016
Volume & Issue: Volume 50 (2016) - Issue 2 (April 2016)
Page range: 83 - 105
Journal Details
License
Format
Journal
eISSN
1336-0329
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

Micro RNAs (miRNAs) are small regulatory molecules of increasing biologists’ interest. miRNAs, unlikely mRNA, do not encode proteins. It is a class of small double stranded RNA molecules that via their seed sequence interact with mRNA and inhibit its expression. It has been estimated that 30% of human gene expression is regulated by miRNAs. One miRNA usually targets several mRNAs and one mRNA can be regulated by several miRNAs. miRNA biogenesis is realized by key enzymes, Drosha and Dicer. miRNA/mRNA interaction depends on binding to RNA-induced silencing complex. Today, complete commercially available methodical proposals for miRNA investigation are available. There are techniques allowing the identification of new miRNAs and new miRNA targets, validation of predicted targets, measurement of miRNAs and their precursor levels, and validation of physiological role of miRNAs under in vitro and in vivo conditions. miRNAs have been shown to influence gene expression in several endocrine glands, including pancreas, ovary, testes, hypothalamus, and pituitary.

Keywords

Baccarini A, Chauhan H, Gardner TJ, Jayaprakash AD, Sachidanandam R, Brown BD. Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 21, 369-376, 2011. http://dx.doi.org/10.1016/j.cub.2011.01.06710.1016/j.cub.2011.01.067308843321353554Search in Google Scholar

Balcells I, Cirera S, Busk PK. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol 11, 70, 2011. http://dx.doi.org/10.1186/1472-6750-11-7010.1186/1472-6750-11-70313553021702990Search in Google Scholar

Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB, Tavakkolizadeh A. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts. Exp Cell Res 316, 3512-3521, 2010. http://dx.doi.org/10.1016/j.yexcr.2010.07.00710.1016/j.yexcr.2010.07.007297679920633552Search in Google Scholar

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233, 2009. http://dx.doi.org/10.1016/j.cell.2009.01.00210.1016/j.cell.2009.01.002379489619167326Search in Google Scholar

Benes V, Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50, 244-249, 2010. http://dx.doi.org/10.1016/j.ymeth.2010.01.02610.1016/j.ymeth.2010.01.02620109550Search in Google Scholar

Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC. Mammalian mirtron genes. Mol Cell 28, 328-336, 2007. http://dx.doi.org/10.1016/j.molcel.2007.09.02810.1016/j.molcel.2007.09.028276338417964270Search in Google Scholar

Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366, 2001. http://dx.doi.org/10.1038/3505311010.1038/3505311011201747Search in Google Scholar

Burgos KL, Javaherian A, Bomprezzi R, Ghaffari L, Rhodes S, Courtright A, Tembe W, Kim S, Metpally R, Van Keuren-Jensen K. Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA 19, 712-722, 2013. http://dx.doi.org/10.1261/rna.036863.11210.1261/rna.036863.112367728523525801Search in Google Scholar

Calado A, Treichel N, Muller EC, Otto A, Kutay U. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J 21, 6216-6224, 2002. http://dx.doi.org/10.1093/emboj/cdf62010.1093/emboj/cdf62013720912426393Search in Google Scholar

Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40, 43-50, 2008. http://dx.doi.org/10.1038/ng.2007.3010.1038/ng.2007.30262876218066065Search in Google Scholar

Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584-589, 2010. http://dx.doi.org/10.1038/nature0909210.1038/nature09092299545020424607Search in Google Scholar

Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33, e179, 2005. http://dx.doi.org/10.1093/nar/gni17810.1093/nar/gni178129299516314309Search in Google Scholar

Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18, 997-1006, 2008. http://dx.doi.org/10.1038/cr.2008.28210.1038/cr.2008.28218766170Search in Google Scholar

Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K. MicroRNA modulation of circadian-clock period and entrainment. Neuron 54, 813-829, 2007. http://dx.doi.org/10.1016/j.neuron.2007.05.01710.1016/j.neuron.2007.05.017259074917553428Search in Google Scholar

Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744, 2005. http://dx.doi.org/10.1038/nature0386810.1038/nature03868294492615973356Search in Google Scholar

Choi JW, Kang SM, Lee Y, Hong SH, Sanek NA, Young WS, Lee HJ. MicroRNA profiling in the mouse hypothalamus reveals oxytocin-regulating microRNA. J Neurochem 126, 331-337, 2013. http://dx.doi.org/10.1111/jnc.1230810.1111/jnc.12308371686223682839Search in Google Scholar

Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4, e5279, 2009. http://dx.doi.org/10.1371/journal.pone.000527910.1371/journal.pone.0005279266875819390574Search in Google Scholar

Correa-Medina M, Bravo-Egana V, Rosero S, Ricordi C, Edlund H, Diez J, Pastori RL. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 9, 193-199, 2009. http://dx.doi.org/10.1016/j.gep.2008.12.003 10.1016/j.gep.2008.12.00319135553Search in Google Scholar

da Costa Martins PA, Bourajjaj M, Gladka M, Kortland M, van Oort RJ, Pinto YM, Molkentin JD, De Windt LJ. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118, 1567-1576, 2008. http://dx.doi.org/10.1161/CIRCULATIONAHA.108.76998410.1161/CIRCULATIONAHA.108.76998418809798Search in Google Scholar

Dai A, Sun H, Fang T, Zhang Q, Wu S, Jiang Y, Ding L, Yan G, Hu Y. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett 587, 2474−2482, 2013. http://dx.doi.org/10.1016/j.febslet.2013.06.02310.1016/j.febslet.2013.06.02323810756Search in Google Scholar

Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, Ullian EM. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28, 4322-4330, 2008a. http://dx.doi.org/10.1523/JNEUROSCI.4815-07.200810.1523/JNEUROSCI.4815-07.2008384479618434510Search in Google Scholar

Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454, 56-61, 2008b. http://dx.doi.org/10.1038/nature0708610.1038/nature07086265342218548003Search in Google Scholar

Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235, 2004. http://dx.doi.org/10.1038/nature0304910.1038/nature0304915531879Search in Google Scholar

Diederichs S, Haber DA. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097-1108, 2007. http://dx.doi.org/10.1016/j.cell.2007.10.03210.1016/j.cell.2007.10.03218083100Search in Google Scholar

Dogini DB, Pascoal VD, Avansini SH, Vieira AS, Pereira TC, Lopes-Cendes I. Th e new world of RNAs. Genet Mol Biol 37, 285-293, 2014. http://dx.doi.org/10.1590/S1415-4757201400020001410.1590/S1415-47572014000200014398358324764762Search in Google Scholar

Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA 16, 2043−2050, 2010. http://dx.doi.org/10.1261/rna.241411010.1261/rna.2414110295704420855538Search in Google Scholar

Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Diff er 16, 1590-1598, 2009. http://dx.doi.org/10.1038/cdd.2009.15310.1038/cdd.2009.153301410719816508Search in Google Scholar

Eskildsen TV, Jeppesen PL, Schneider M, Nossent AY, Sandberg MB, Hansen PB, Jensen CH, Hansen ML, Marcussen N, Rasmussen LM, Bie P, Andersen DC, Sheikh SP. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci 14, 11190−11207, 2013. http://dx.doi.org/10.3390/ijms14061119010.3390/ijms140611190370972723712358Search in Google Scholar

Feng Y, Zhang X, Song Q, Li T, Zeng Y. Drosha processing controls the specificity and efficiency of global microRNA expression. Biochem Biophys Acta 1809, 700-707, 2011. http://dx.doi.org/10.1016/j.bbagrm.2011.05.01510.1016/j.bbagrm.2011.05.015321042121683814Search in Google Scholar

Figueredo Dde S, Gitai DL, Andrade TG. Daily variations in the expression of miR-16 and miR-181a in human leukocytes. Blood Cells Mol Dis 54, 364−368, 2015. http://dx.doi.org/10.1016/j.bcmd.2015.01.00410.1016/j.bcmd.2015.01.00425641414Search in Google Scholar

Filipowicz W. RNAi: the nuts and bolts of the RISC machine. Cell 122, 17-20, 2005. http://dx.doi.org/10.1016/j.cell.2005.06.02310.1016/j.cell.2005.06.02316009129Search in Google Scholar

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 391, 806-811, 1998. http://dx.doi.org/10.1038/3588810.1038/358889486653Search in Google Scholar

Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 105, 14879−14884, 2008. http://dx.doi.org/10.1073/pnas.0803230105 10.1073/pnas.0803230105256746118812516Search in Google Scholar

Frezzetti D, Reale C, Cali G, Nitsch L, Fagman H, Nilsson O, Scarfo M, De Vita G, Di Lauro R. Th e microRNA-processing enzyme Dicer is essential for thyroid function. PLoS One 6, e27648, 2011. http://dx.doi.org/10.1371/journal.pone.002764810.1371/journal.pone.0027648322166922132122Search in Google Scholar

Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K, Mihara M, Naitou M, Endoh H, Nakamura T, Akimoto C, Yamamoto Y, Katagiri T, Foulds C, Takezawa S, Kitagawa H, Takeyama K, O’Malley BW, Kato S. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9, 604-611, 2007. http://dx.doi.org/10.1038/ncb157710.1038/ncb157717435748Search in Google Scholar

Gaken J, Mohamedali AM, Jiang J, Malik F, Stangl D, Smith AE, Chronis C, Kulasekararaj AG, Thomas NS, Farzaneh F, Tavassoli M, Muft i GJ. A functional assay for microRNA target identification and validation. Nucleic Acids Res 40, e75, 2012. http://dx.doi.org/10.1093/nar/gks14510.1093/nar/gks145337890322323518Search in Google Scholar

Georgi SA, Reh TA. Dicer is required for the transition from early to late progenitor state in the developing mouse retina. J. Neurosci 30, 4048-4061, 2010. http://dx.doi.org/10.1523/JNEUROSCI.4982-09.201010.1523/JNEUROSCI.4982-09.2010285388020237275Search in Google Scholar

Godoy J, Nishimura M, Webster NJ. Gonadotropin-releasing hormone induces miR-132 and miR-212 to regulate cellular morphology and migration in immortalized LbetaT2 pituitary gonadotrope cells. Mol Endocrinol 25, 810−820, 2011. http://dx.doi.org/10.1210/me.2010-035210.1210/me.2010-0352308232321372146Search in Google Scholar

Gregory RI, LaTP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631−640, 2005. http://dx.doi.org/10.1016/j.cell.2005.10.02210.1016/j.cell.2005.10.02216271387Search in Google Scholar

Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research 34, Database issue 140-4, 2006. http://dx.doi.org/10.1093/nar/gkj11210.1093/nar/gkj112134747416381832Search in Google Scholar

Gu S, Jin L, Zhang F, Huang Y, Grimm D, Rossi JJ, Kay MA. Th ermodynamic stability of small hairpin RNAs highly influences the loading process of different mammalian Argonautes. Proc Natl Acad Sci U S A 108, 9208-9213, 2011. http://dx.doi.org/10.1073/pnas.101802310810.1073/pnas.1018023108310732421576459Search in Google Scholar

Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887-901, 2006. http://dx.doi.org/10.1016/j.cell.2006.03.04310.1016/j.cell.2006.03.04316751099Search in Google Scholar

Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ. Th e RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 102, 10898-10903, 2005. http://dx.doi.org/10.1073/pnas.050483410210.1073/pnas.0504834102118245416040801Search in Google Scholar

Hassan MQ, Gordon JA, Lian JB, van Wijnen AJ, Stein JL, Stein GS. Ribonucleoprotein immunoprecipitation (RNP-IP): a direct in vivo analysis of microRNA-targets. J Cell Biochem 110, 817-822, 2010. http://dx.doi.org/10.1002/jcb.2256210.1002/jcb.22562332975320564179Search in Google Scholar

He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a potential human oncogene. Nature 435, 828-833, 2005. http://dx.doi.org/10.1038/nature0355210.1038/nature03552459934915944707Search in Google Scholar

He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130-1134, 2007. http://dx.doi.org/10.1038/nature0593910.1038/nature05939459099917554337Search in Google Scholar

Heo I, Joo C, Cho J, Ha M, Han J, Kim VN. Lin28 mediates the terminal uridylation of let-7 precursor Micro- RNA. Molecular Cell 32, 276-284, 2008. http://dx.doi.org/10.1016/j.molcel.2008.09.01410.1016/j.molcel.2008.09.01418951094Search in Google Scholar

Holley CL, Topkara VK. An introduction to small non-coding RNAs: miRNA and snoRNA. Cardiovasc Drugs Th er 25, 151-159, 2011. http://dx.doi:10.1007/s10557-011-6290-z 10.1007/s10557-011-6290-z21573765Search in Google Scholar

Hock J, Meister G. The Argonaute protein family. Genome Biol 9, 210, 2008. http://dx.doi.org/10.1186/gb-2008-9-2-21010.1186/gb-2008-9-2-210237472418304383Search in Google Scholar

Hrustincova A, Votavova H, Dostalova Merkerova M. Circulating MicroRNAs: Methodological Aspects in Detection of Th ese Biomarkers.Folia Biologica (Praha) 61, 203−218, 2015.Search in Google Scholar

Hu HY, Yan Z, Xu Y, Hu H, Menzel C, Zhou YH, Chen W, Khaitovich P. Sequence features associated with microRNA strand selection in humans and fl ies. BMC Genomics 10, 413, 2009. http://dx.doi.org/10.1186/1471-2164-10-41310.1186/1471-2164-10-413275178619732433Search in Google Scholar

Hu Z, Shen WJ, Cortez Y, Tang X, Liu LF, Kraemer FB, Azhar S. Hormonal regulation of microRNA expression in steroid producing cells of the ovary, testis and adrenal gland. PLoS One 8, e78040, 2013. http://dx.doi.org/10.1371/journal.pone.007804010.1371/journal.pone.0078040381025224205079Search in Google Scholar

Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056-2060, 2002. http://dx.doi.org/10.1126/science.107382710.1126/science.107382712154197Search in Google Scholar

Imbar T, Eisenberg I. Regulatory role of microRNAs in ovarian function. Fertil Steril 101, 1524−1530, 2014. http://dx.doi.org/10.1016/j.fertnstert.2014.04.024 10.1016/j.fertnstert.2014.04.02424882616Search in Google Scholar

Kawai S, Amano A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J Cell Biol 197, 201-208, 2012. http://dx.doi.org/10.1083/jcb.20111000810.1083/jcb.201110008332839122492723Search in Google Scholar

Kentwell J, Gundara JS, Sidhu SB. Noncoding RNAs in endocrine malignancy. Oncologist 19, 483−491, 2014. http://dx.doi: 10.1634/theoncologist.2013-045810.1634/theoncologist.2013-0458401297224718512Search in Google Scholar

Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6, 376-385, 2005. http://dx.doi.org/10.1038/nrm164410.1038/nrm164415852042Search in Google Scholar

Krol J, Sobczak K, Wilczynska U, Drath M, Jasinska A, Kaczynska D, Krzyzosiak WJ. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. J Biol Chem 279, 42230-42239, 2004. http://dx.doi.org/10.1074/jbc.M40493120010.1074/jbc.M40493120015292246Search in Google Scholar

Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101, 59-68, 2007. http://dx.doi.org/10.1161/CIRCRESAHA.107.15391610.1161/CIRCRESAHA.107.15391617540974Search in Google Scholar

Kuhn DE, Martin MM, Feldman DS, Terry AV Jr, Nuovo GJ, Elton TS. Experimental validation of miRNA targets. Methods 44, 47−54, 2008. http://dx.doi.org/10.1016/j.ymeth.2007.09.00510.1016/j.ymeth.2007.09.005223791418158132Search in Google Scholar

Lal A, Th omas MP, Altschuler G, Navarro F, O’Day E, Li XL, Concepcion C, Han YC, Thiery J, Rajani DK, Deutsch A, Hofmann O, Ventura A, Hide W, Lieberman J. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet 7, e1002363, 2011. http://dx.doi.org/10.1371/journal.pgen.100236310.1371/journal.pgen.1002363321316022102825Search in Google Scholar

Landthaler M, Yalcin A, Tuschl T. Th e human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14, 2162-2167, 2004. http://dx.doi.org/10.1016/j.cub.2004.11.00110.1016/j.cub.2004.11.001Search in Google Scholar

Lannes J, L’Hote D, Garrel G, Laverriere JN, Cohen-Tannoudji J, Querat B. Rapid communication: A microRNA-132/212 pathway mediates GnRH activation of FSH expression. Mol Endocrinol 29, 364−372, 2015. http://dx.doi.org/10.1210/me.2014-139010.1210/me.2014-1390Search in Google Scholar

Lee RC, Feinbaum RL, Ambros V. Th e C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854, 1993. http://dx.doi.org/10.1016/0092-8674(93)90529-Y 10.1016/0092-8674(93)90529-YSearch in Google Scholar

Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21, 4663-4670, 2002. http://dx.doi.org/10.1093/emboj/cdf47610.1093/emboj/cdf476Search in Google Scholar

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419, 2003. http://dx.doi.org/10.1038/nature0195710.1038/nature01957Search in Google Scholar

Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060, 2004a. http://dx.doi.org/10.1038/sj.emboj.760038510.1038/sj.emboj.7600385Search in Google Scholar

Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69-81, 2004b. http://dx.doi.org/10.1016/S0092-8674(04)00261-210.1016/S0092-8674(04)00261-2Search in Google Scholar

Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 14, 35-42, 2008. http://dx.doi.org/10.1261/rna.80450810.1261/rna.804508215102718025253Search in Google Scholar

Lee KH, Kim SH, Lee HR, Kim W, Kim DY, Shin JC, Yoo SH, Kim KT. MicroRNA-185 oscillation controls circadian amplitude of mouse Cryptochrome 1 via translational regulation. Mol Biol Cell 24, 2248-2255, 2013. http://dx.doi.org/10.1091/mbc.E12-12-084910.1091/mbc.e12-12-0849370873023699394Search in Google Scholar

Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, oft en flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20, 2005. http://dx.doi.org/10.1016/j.cell.2004.12.03510.1016/j.cell.2004.12.03515652477Search in Google Scholar

Li X, Carthew RW. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123, 1267-1277, 2005. http://dx.doi.org/10.1016/j.cell.2005.10.04010.1016/j.cell.2005.10.04016377567Search in Google Scholar

Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6, 1258−1266, 1999. http://dx.doi.org/10.1038/sj.gt.330094710.1038/sj.gt.330094710455434Search in Google Scholar

Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22, 3242-3254, 2008. http://dx.doi.org/10.1101/gad.173870810.1101/gad.1738708260076119015276Search in Google Scholar

Ma W, Hu S, Yao G, Xie S, Ni M, Liu Q, Gao X, Zhang J, Huang X, Zhang Y. An androgen receptor-microrna-29a regulatory circuitry in mouse epididymis. J Biol Chem 288, 29369−29381, 2013. http://dx.doi.org/10.1074/jbc.M113.45406610.1074/jbc.M113.454066379523823960076Search in Google Scholar

MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA. Structural basis for doublestranded RNA processing by Dicer. Science 311, 195-198, 2006. http://dx.doi.org/10.1126/science.112163810.1126/science.112163816410517Search in Google Scholar

Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8, 209-220, 2007. http://dx.doi.org/10.1038/nrm2124 10.1038/nrm212417318225Search in Google Scholar

Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607-620, 2005. http://dx.doi.org/10.1016/j.cell.2005.08.04410.1016/j.cell.2005.08.04416271386Search in Google Scholar

Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, Rossi S, Fernandez AF, Carneiro F, Oliveira C, Ferreira B, Liu CG, Villanueva A, Capella G, Schwartz S Jr, Shiekhattar R, Esteller M. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41, 365−370, 2009. http://dx.doi.org/10.1038/ng.31710.1038/ng.317450950819219043Search in Google Scholar

Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105, 10513-10518, 2008. http://dx.doi.org/10.1073/pnas.080454910510.1073/pnas.0804549105249247218663219Search in Google Scholar

Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, Takada S, Lotz MK, Ueno-Kudo H, Asahara H. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 24, 1173−1185, 2010. http://dx.doi.org/10.1101/gad.191551010.1101/gad.1915510287865420466812Search in Google Scholar

Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y, Davidson BL. Structure and activity of putative intronic miRNA promoters. RNA 16, 495-505, 2010. http://dx.doi.org/10.1261/rna.173191010.1261/rna.1731910Search in Google Scholar

Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 89, 687-696, 2007. http://dx.doi.org/10.1016/j.ygeno.2007.01.00410.1016/j.ygeno.2007.01.004Search in Google Scholar

Mornet E, Dupont J, Vitek A, White PC. Characterization of two genes encoding human steroid 11 beta-hydroxylase (P-450(11) beta). J Biol Chem 264, 20961−20967, 1989.10.1016/S0021-9258(19)30030-4Search in Google Scholar

Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ. Critical roles for Dicer in the female germline. Genes Dev 21, 682-693, 2007. http://dx.doi.org/10.1101/gad.152130710.1101/gad.1521307182094217369401Search in Google Scholar

Nagel R, Clijsters L, Agami R. The miRNA-192/194 cluster regulates the Period gene family and the circadian clock. FEBS J 276, 5447-5455, 2009. http://dx.doi.org/10.1111/j.1742-4658.2009.07229.x 10.1111/j.1742-4658.2009.07229.x19682069Search in Google Scholar

Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1, 155-161, 2004. http://dx.doi.org/10.1038/nmeth71710.1038/nmeth71715782179Search in Google Scholar

Nemoto T, Mano A, Shibasaki T. Increased expression of miR-325-3p by urocortin 2 and its involvement in stressinduced suppression of LH secretion in rat pituitary. Am J Physiol Endocrinol Metab 302, E781−E787, 2012. http://dx.doi.org/10.1152/ajpendo.00616.201110.1152/ajpendo.00616.201122252941Search in Google Scholar

Newman MA, Thomson, JM, Hammond SM. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539-1549, 2008. http://dx.doi.org/10.1261/rna.115510810.1261/rna.1155108249146218566191Search in Google Scholar

Noland CL, Doudna JA. Multiple sensors ensure guide strand selection in human RNAi pathways. RNA 19, 639-648, 2013. http://dx.doi.org/10.1261/rna.037424.11210.1261/rna.037424.112367727923531496Search in Google Scholar

Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89-100, 2007. http://dx.doi.org/10.1016/j.cell.2007.06.02810.1016/j.cell.2007.06.028272931517599402Search in Google Scholar

Ozcan S. Minireview: microRNA function in pancreatic β cells. Mol Endocrinol 28, 1922−1933, 2014. http://dx.doi.org/10.1210/me.2014-130610.1210/me.2014-1306425036225396300Search in Google Scholar

Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE. Chromatin structure analyses identify miRNA promoters. Genes Dev 22, 3172-3183, 2008. http://dx.doi.org/10.1101/gad.170650810.1101/gad.1706508259360719056895Search in Google Scholar

Pare JM, Tahbaz N, Lopez-Orozco J, LaPointe P, Lasko P, Hobman TC. Hsp90 regulates the function of argonaute 2 and its recruitment to stress granule and P-bodies. Mol Biol Cell 20, 3273-3284, 2009. http://dx.doi.org/10.1091/mbc.E09-01-008210.1091/mbc.e09-01-0082271082219458189Search in Google Scholar

Park CY, Choi YS, McManus MT. Analysis of microRNA knockouts in mice. Hum Mol Genet 19, 169−75, 2010. http://dx.doi.org/10.1093/hmg/ddq36710.1093/hmg/ddq367298146620805106Search in Google Scholar

Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell 25, 635−646, 2007. http://dx.doi.org/10.1016/j.molcel.2007.02.01110.1016/j.molcel.2007.02.01117349952Search in Google Scholar

Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281, 26932−26942, 2006. http://dx.doi.org/10.1074/jbc.M60122520010.1074/jbc.M60122520016831872Search in Google Scholar

Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226−230, 2004. http://dx.doi.org/10.1038/nature0307610.1038/nature0307615538371Search in Google Scholar

Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 106, 5813-5818, 2009. http://dx.doi.org/10.1073/pnas.0810550106 10.1073/pnas.0810550106265655619289822Search in Google Scholar

Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26, 731-734, 2007. http://dx.doi.org/10.1016/j.molcel.2007.05.01710.1016/j.molcel.2007.05.01717540598Search in Google Scholar

Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. Th e 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906, 2000. http://dx.doi.org/10.1038/3500260710.1038/3500260710706289Search in Google Scholar

Riester A, Issler O, Spyroglou A, Rodrig SH, Chen A, Beuschlein F. ACTH-dependent regulation of microRNA as endogenous modulators of glucocorticoid receptor expression in the adrenal gland. Endocrinology 153, 212−222, 2012. http://dx.doi.org/10.1210/en.2011-128510.1210/en.2011-1285Search in Google Scholar

Robertson S, MacKenzie SM, Alvarez-Madrazo S, Diver LA, Lin J, Stewart PM, Fraser R, Connell JM, Davies E. MicroRNA-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex. Hypertension 62, 572−578, 2013. http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.0110210.1161/HYPERTENSIONAHA.113.01102Search in Google Scholar

Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 14, 1902-1910, 2004. http://dx.doi.org/10.1101/gr.272270410.1101/gr.2722704Search in Google Scholar

Romero DG, Plonczynski MW, Carvajal CA, Gomez-Sanchez EP, Gomez-Sanchez CE. Microribonucleic acid-21 increases aldosterone secretion and proliferation in H295R human adrenocortical cells. Endocrinology 149, 2477−2483, 2008. http://dx.doi.org/10.1210/en.2007-168610.1210/en.2007-1686Search in Google Scholar

Shende VR, Goldrick MM, Ramani S, Earnest DJ. Expression and Rhythmic Modulation of Circulating MicroRNAs Targeting the Clock Gene Bmal1 in Mice. PLoS One 6, e22586, 2011. http://dx.doi.org/10.1371/journal.pone.002258610.1371/journal.pone.0022586Search in Google Scholar

Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39, 519−525, 2005. http://dx.doi.org/10.2144/00011201010.2144/000112010Search in Google Scholar

Schmittgen TD, Jiang J, Liu Q, Yang L. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32, e43, 2004. http://dx.doi.org/10.1093/nar/gnh04010.1093/nar/gnh040Search in Google Scholar

Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C. Real-time of PCR quantification precursor and mature microRNA. Methods 44, 31-38, 2008. http://dx.doi.org/10.1016/j.ymeth.2007.09.00610.1016/j.ymeth.2007.09.006Search in Google Scholar

Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208, 2003. http://dx.doi.org/10.1016/S0092-8674(03)00759-110.1016/S0092-8674(03)00759-1Search in Google Scholar

Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J, Blelloch R. MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 20, 271-277, 2010. http://dx.doi.org/10.1016/j.cub.2009.12.04410.1016/j.cub.2009.12.044287251220116247Search in Google Scholar

Tang R, Li L, Zhu D, Hou D, Cao T, Gu H, Zhang J, Chen J, Zhang CY, Zen K. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res 3, 504-515, 2012. http://dx.doi.org/10.1038/cr.2011.13710.1038/cr.2011.137329229921862971Search in Google Scholar

Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20, 2202-2207, 2006. http://dx.doi.org/10.1101/gad.144440610.1101/gad.1444406155320316882971Search in Google Scholar

Timmermans S, Van Hauwermeiren F, Puimege L, Dejager L, Van Wonterghem E, Vanhooren V, Mestdagh P, Libert C, Vandenbroucke RE. Determining differentially expressed miRNAs and validating miRNA−target relationships using the SPRET/Ei mouse strain. Mamm Genome 26, 94−107, 2015. http://dx.doi.org/10.1007/s00335-014-9550-y 10.1007/s00335-014-9550-y25491574Search in Google Scholar

Van Nieuwerburgh F, Soetaert S, Podshivalova K, Ay-Lin Wang E, Schaff er L, Deforce D, Salomon DR, Head SR, Ordoukhanian P. Quantitative bias in Illumina TruSeq and a novel post amplification barcoding strategy for multiplexed DNA and small RNA deep sequencing. PLoS One 6, e26969, 2011. http://dx.doi.org/10.1371/journal.pone.0026969 10.1371/journal.pone.0026969320393622046424Search in Google Scholar

van Rooij E. Th e art of microRNA research. Circ Res 108, 219−234, 2011. http://dx.doi.org/10.1161/CIRCRESAHA.110.22749610.1161/CIRCRESAHA.110.22749621252150Search in Google Scholar

Vasudevan S. Functional validation of microRNA-target RNA interactions. Methods 58, 126−134, 2012. http://dx.doi.org/10.1016/j.ymeth.2012.08.00210.1016/j.ymeth.2012.08.00222910526Search in Google Scholar

Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875-886, 2008. http://dx.doi.org/10.1016/j.cell.2008.02.01910.1016/j.cell.2008.02.019232333818329372Search in Google Scholar

Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39, 380-385, 2007. http://dx.doi.org/10.1038/ng196910.1038/ng1969300854917259983Search in Google Scholar

Wang D, Zhang Z, O’Loughlin E, Lee T, Houel S, O’Carroll D, Tarakhovsky A, Ahn NG, Yi R. Quantitative functions of Argonaute proteins in mammalian development. Genes Dev 26, 693-704, 2012. http://dx.doi.org/10.1101/gad.182758.111 10.1101/gad.182758.111332388022474261Search in Google Scholar

Wang L, Xu C. Role of microRNAs in mammalian spermatogenesis and testicular germ cell tumors. Reproduction 149, R127-137, 2015. http://dx.doi.org/10.1530/REP-14-023910.1530/REP-14-023925352684Search in Google Scholar

Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y, Klinge CM. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancercells. Nucleic Acids Res 37, 2584−2595, 2009. http://dx.doi.org/10.1093/nar/gkp11710.1093/nar/gkp117267787519264808Search in Google Scholar

Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, Griswold MD, Namekawa SH, Royo H, Turner JM, Yan W. Th e RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287, 25173-25190, 2012. http://dx.doi.org/10.1074/jbc.M112.36205310.1074/jbc.M112.362053340813322665486Search in Google Scholar

Wu S, Sun H, Zhang Q, Jiang Y, Fang T, Cui I, Yan G, Hu Y. MicroRNA-132 promotes estradiol synthesis in ovarian granulosa cells via translational repression of Nurr1. Reprod Biol Endocrinol 13, 94, 2015. http://dx.doi.org/10.1186/s12958-015-0095-z 10.1186/s12958-015-0095-z453968626282993Search in Google Scholar

Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem 282, 25053−25066, 2007. http://dx.doi.org/10.1074/jbc.M70050120010.1074/jbc.M70050120017597072Search in Google Scholar

Yan Y, Salazar TE, Dominguez JM 2nd, Nguyen DV, Li Calzi S, Bhatwadekar AD, Qi X, Busik JV, Boulton ME, Grant MB. Dicer expression exhibits a tissue-specifi c diurnal pattern that is lost during aging and in diabetes. PLoS One 8, e80029, 2013. http://dx.doi.org/10.1371/journal.pone.008002910.1371/journal.pone.0080029382054024244599Search in Google Scholar

Yang WJ, Yang D, Na S, Sandusky G, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 280, 9330-9335, 2004. http://dx.doi.org/10.1074/jbc.M41339420010.1074/jbc.M41339420015613470Search in Google Scholar

Yang M, Lee JE, Padgett RW, Edery I. Circadian regulation of a limited set of conserved microRNAs in Drosophila. BMC Genomics 9, 83, 2008. http://dx.doi.org/10.1186/1471-2164-9-8310.1186/1471-2164-9-83226304418284684Search in Google Scholar

Yang Y, Chang S, Zhao Z, Hou NI, He K, Wang X, Gao L, Wang L, Cai D, Guo BO, Tong D, Song T, Huang C. MicroRNA-214 suppresses the proliferation of human hepatocellular carcinoma cells by targeting E2F3. Oncol Lett 10, 3779-3784, 2015. http://dx.doi.org/10.3892/ol.2015.374510.3892/ol.2015.3745466588326788207Search in Google Scholar

Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011-3016, 2003. http://dx.doi.org/10.1101/gad.115880310.1101/gad.115880330525214681208Search in Google Scholar

Yin M, Lu M, Yao G, Tian H, Lian J, Liu L, Liang M, Wang Y, Sun F. Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovariangranulosa cells by targeting RBMS1. Mol Endocrinol 26, 1129−1143, 2012. http://dx.doi.org/10.1210/me.2011-134110.1210/me.2011-1341541700122593182Search in Google Scholar

Zhang X, Zeng Y. Regulation of mammalian microRNA expression. J Cardiovasc Transl Res 3, 197-203, 2010. http://dx.doi.org/10.1007/s12265-010-9166-x 10.1007/s12265-010-9166-x20560040Search in Google Scholar

Zhang Z, Qin YW, Brewer G, Jing Q. MicroRNA degradation and turnover: regulating the regulators. Wiley Interdiscip Rev RNA 3, 593-600, 2012. http://dx.doi.org/10.1002/wrna.111410.1002/wrna.1114363567522461385Search in Google Scholar

Zhang N, Lin JK, Chen J, Liu XF, Liu JL, Luo HS, Li YQ, Cui S. MicroRNA 375 mediates the signaling pathway of corticotropin-releasing factor (CRF) regulating pro-opiomelanocortin (POMC) expression by targeting mitogen-activated protein kinase 8. J Biol Chem 288, 10361-10373, 2013. http://dx.doi.org/10.1074/jbc.M112.42550410.1074/jbc.M112.425504362441923430746Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo