Open Access

Bacillus subtilis BS-2 and Peppermint Oil as Biocontrol Agents Against Botrytis cinerea


Cite

[1] El-Ghanam AA, Farfour SA, Ragab SS. Bio-suppression of strawberry fruit rot disease caused by Botrytis cinerea. J Plant Pathol Microbiol. 2015;S3:005. DOI: 10.4172/2157-7471.S3-005.10.4172/2157-7471.S3-005Open DOISearch in Google Scholar

[2] Shternshis MV, Belyaev AA, Shpatova TV, Lelyak AA. Influence of Bacillus spp. on strawberry gray mold causing agent and host plant resistance to disease. Contemp Prob Ecol. 2015;8:390-396. DOI: 10.1134/S1995425515030130.10.1134/S1995425515030130Search in Google Scholar

[3] Ongouya Mouekouba LD, Zhang ZZ, Olajide EK, Wang Ai-Jie, Wang Ao-Xue. Biological control of Botrytis cinerea in tomato leaves. IPCBEE. 2013;60:64-68. DOI: 10.7763/IPCBEE.10.7763/IPCBEEOpen DOISearch in Google Scholar

[4] Chen H, Xiao X, Wang J, Wu L, Zheng Z, Yu Z. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnol Lett. 2008;30:919-923. DOI: 10.1007/s10529-007-9626-9.10.1007/s10529-007-9626-918165869Open DOISearch in Google Scholar

[5] Williamson B, Tudzynski B, Tudzynski P, Kan JAL. Botrytis cinerea: The cause of grey mould disease, Mol Plant Pathol. 2007;8:561-580. DOI: 10.1111/J.1364-3703.2007.00417.X.10.1111/j.1364-3703.2007.00417.x20507522Search in Google Scholar

[6] Zhang H, Wang L, Dong Y, Jiang S, Cao J, Meng R. Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biol Control. 2007;40:287-292. DOI: 10.1016/j.ijfoodmicro.2008.05.018.10.1016/j.ijfoodmicro.2008.05.01818579245Open DOISearch in Google Scholar

[7] Essghaier B, Fardeau ML, Cayol JL, Hajlaoui MR, Boudabous A, Jijakli H, et al. Biological control of grey mould in strawberry fruits by halophilic bacteria. J Appl Microbiol. 2009;106:833-846. DOI: 10.1111/j.1365-2672.2008.04053.x.10.1111/j.1365-2672.2008.04053.x19191973Open DOISearch in Google Scholar

[8] Kowalska J. Effects of Trichoderma asperellum [T1] on Botrytis cinerea [PERS.: FR.], growth and yield of organic strawberry. Acta Sci Pol Hortorum Cultus. 2011;10:107-114. http://hortorumcultus.actapol.net/pub/10_4_107.pdf.Search in Google Scholar

[9] Elad Y, Stewart A. Microbial control of Botrytis spp. Chapter 13. In: Elad Y, Williamson B, Tudzynski P, Delen N. editors. Botrytis: Biology, Pathology and Control. Dordrecht: Springer; 2007: 223-241. ISBN 9781402026263. DOI: 10.1007/978-1-4020-2626-3.10.1007/978-1-4020-2626-3Search in Google Scholar

[10] Hernández-León R, Rojas-Solís D, Contreras-Pérez M, Orozco-Mosqueda MC, Macías-Rodríguez LI, Cruz HR, et al. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control. 2015;81:83-92. DOI: 10.1016/j.biocontrol.2014.11.011.10.1016/j.biocontrol.2014.11.011Search in Google Scholar

[11] Jacometti MA, Wratten SD, Walter M. Review: Alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust J Grape Wine R. 2010:16:154-172. DOI: 10.1111/j.1755-0238.2009.0067.x.10.1111/j.1755-0238.2009.0067.xOpen DOISearch in Google Scholar

[12] Ren JJ, Shi GL, Wang XQ, Liu JG, Wang YN. Identification and characterization of a novel Bacillus subtilis strain with potent antifungal activity of a flagellin-like protein. World J Microb Biot. 2013;29:2343-2352. DOI: 10.1007/s11274-013-1401-6.10.1007/s11274-013-1401-6Open DOISearch in Google Scholar

[13] Zongzheng Y, Xin L, Zhong L, Jinzhao P, Jin Q, Wenyan Y. Effect of Bacillus Subtilis SY1 on antifungal activity and plant growth. Int J Agric Biol Eng. 2009;2:55-61. DOI: 10.3965/j.issn.1934-6344.2009.04.055-061.10.3965/j.issn.1934-6344.2009.04.055-061Open DOISearch in Google Scholar

[14] Alina SO, Constantiniscu F, Petruta CC. Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Rom Biotech Lett. 2015;20:10737-10750. http://www.rombio.eu/vol20nr5/01%20SICUIA%20OANA%20ALINA.pdf.Search in Google Scholar

[15] Behdani M, Pooyan M, Abbasi S. Evaluation of antifungal activity of some medicinal plants essential oils against Botrytis cinerea, causal agent of postharvest apple rot, in vitro. Intl J Agri Crop Sci. 2012;4:1012-1016. https://www.researchgate.net/publication/292586844_Evaluation_of_antifungal_activity_of_some_medicinal_plants_essential_oils_against_Botrytis_cinerea_causal_agent_of_postharvest_apple_rot_in_vitro.Search in Google Scholar

[16] Bouchra C, Mohamed A, Hassani Mina I, Hmamouchi M. Antifungal activity of essential oils from several medicinal plants against four postharvest citrus pathogens. Phytopathol. Mediterr. 2003;42:251-256. http://www.fupress.net/index.php/pm/article/view/1711/1646.Search in Google Scholar

[17] Şesan TE, Enache E, Iacomi BM, Oprea M, Oancea F, Iacomi C. Antifungal activity of some plant extracts against Botrytis cinerea Pers. in the blackcurrant crop (Ribes nigrum L.). Acta Sci Pol Hortorum Cultus. 2015;14:29-43. http://www.acta.media.pl/pl/full/7/2015/000070201500014000010002900043.pdf.Search in Google Scholar

[18] Toure Y, Ongena M, Jacques P, Guiro A, Thonar P. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol. 2004;96:1151-1160. DOI: 10.1111/j.1365-2672.2004.02252.x.10.1111/j.1365-2672.2004.02252.xOpen DOISearch in Google Scholar

[19] Nabrdalik M, Moliszewska E, Wierzba S. Importance of endophytic strains Pantoea agglomerans in the biological control of Rhizoctonia solani. Ecol Chem Eng S. 2018;25:331-342. DOI: 10.1515/eces-2018-0023.10.1515/eces-2018-0023Open DOISearch in Google Scholar

[20] Ariffin H, Abdullah N, Umi Kalsom MS, Shirai Y, Hassan MA. Production and characterisation of cellulase by Bacillus pumilus EB3. Int J Eng Technol. 2006;3:47-53. https://pdfs.semanticscholar.org/2ddf/2067a5aba34de9ded53aff23439854e0040d.pdf.Search in Google Scholar

[21] Janda K. Lipolityc activity and radial daily growth rate changes during incubation of Thermomyces lanugonosus on natural and synthetic fatty substrates. Rocz Panstw Zakl Hig. 2005;56:347-353. https://www.researchgate.net/publication/7168868_Lipolytic_activity_and_radial_daily_growth_rate_changes_during_incubation_of_thermomyces_lanuginosus_on_natural_and_synthetic_fatty_substrates.Search in Google Scholar

[22] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426-428. DOI: 10.1021/ac60147a030.10.1021/ac60147a030Open DOISearch in Google Scholar

[23] Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;19:265-275. http://www.jbc.org/content/193/1/265.full.pdf.10.1016/S0021-9258(19)52451-6Search in Google Scholar

[24] Todorova S, Kozhuharova L. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil. World J Microb Biot. 2010;26:1207-1216. DOI: 10.1007/s11274-009-0290-1.10.1007/s11274-009-0290-124026925Open DOISearch in Google Scholar

[25] Hang NTT, Oh SO, Kim GH, Hur JS, Koh YJ. Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol J. 2005;21(1):59-63. https://pdfs.semanticscholar.org/6319/e3f619f0a5448add924ceb59d5f5a7d2dfcd.pdf.10.5423/PPJ.2005.21.1.059Search in Google Scholar

[26] Wang JL, Zong ZY, Shang W, Wei QiW, Wang HK. Activity against Botrytis cinerea of Bacillus amyloliquefaciens IMAUB1034 isolated from naturally fermented congee. J Food Agric Environ. 2012;10:534-542.Search in Google Scholar

[27] Wang S, Tongle HU, Yanling J IAO, Jianjian WEI, Keqiang CAO. Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers. Front Agric China. 2009;3(3):247-252. DOI: 10.1007/s11703-009-0042-x.10.1007/s11703-009-0042-xOpen DOISearch in Google Scholar

[28] Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biot. 2005;69:29-38. DOI: 10.1007/s00253-005-1940-3.10.1007/s00253-005-1940-315742166Open DOISearch in Google Scholar

[29] Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol. 2007;9:1084-1090. DOI: 10.1111/j.1462-2920.2006.01202.x.10.1111/j.1462-2920.2006.01202.xOpen DOISearch in Google Scholar

[30] Ongena M, Henry G, Thonart P. The roles of cyclic lipopeptides in the biocontrol activity of Bacillus subtilis. Chapter 5. In: Gisi U, Chet I, Gullino ML. editors. Recent Developments in Management of Plant Diseases, Plant Pathology in the 21st Century 1. Springer Science+Business Media B.V. 2010: 59-69. ISBN 9789400731417. DOI: 10.1007/978-1-4020-8804-9.10.1007/978-1-4020-8804-9Search in Google Scholar

[31] Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J. Biological activities of two fungistatics produced by Bacillus cereus UW85. Appl Environ Microbiol. 1994;60:2023-2030. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC201597/pdf/aem00023-0329.pdf.10.1128/aem.60.6.2023-2030.1994Search in Google Scholar

[32] Lin TP, Chen CL, Chang LK, Tschen JS. M, Liu ST. Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis. J Bacteriol. 1999;181:5060-5067. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC93996/pdf/jb005060.pdf.10.1128/JB.181.16.5060-5067.1999Search in Google Scholar

[33] Liu W, Mu W, Zhu B, Du Y, Liu F. Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agr Sci China. 2008;7:1104-1114. DOI: 10.1016/S1671-2927(08)60153-4.10.1016/S1671-2927(08)60153-4Open DOISearch in Google Scholar

[34] Mnif I, Ghribi D. Potential of bacterial derived biopesticides in pest management. Crop Prot. 2015;77:52-64. DOI: 10.1016/j.cropro.2015.07.017.10.1016/j.cropro.2015.07.017Open DOISearch in Google Scholar

[35] Grata K, Nabrdalik M, Latała A. Evaluation of proteolytic activity of Bacillus mycoides strains. Proc ECOpole. 2010;4:253-256. http://tchie.uni.opole.pl/PECO10_2/PECO_2010_2_p1.pdf.Search in Google Scholar

[36] Nabrdalik M, Grata K, Latała A. Proteolytic activity of Bacillus cereus strains. Proc ECOpole. 2010;4;273-278. http://tchie.uni.opole.pl/PECO10_2/PECO_2010_2_p1.pdf.Search in Google Scholar

[37] Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, et al. Challenges and advances in the heterologous expression of cellulolytic enzymes: A review. Biotechnol Biofuels. 2014;7:135. DOI: 10.1186/s13068-014-0135-5.10.1186/s13068-014-0135-5421210025356086Open DOISearch in Google Scholar

[38] Immanuel G, Dhanusha R, Prema P, Palavesam A. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int J Environ Sci Technol. 2006;3(1):25-34. DOI: 10.1007/BF03325904.10.1007/BF03325904Open DOISearch in Google Scholar

[39] Kumar DP, Anupama PD, Singh RK, Thenmozhi R, Nagasathya A, Thajuddin N, et al. Evaluation of extracellular lytic enzymes from indigenous Bacillus isolates. J Microbiol Biotech Res. 2012;2(1):129-137. https://www.interesjournals.org/articles/evaluation-of-extracellular-lytic-enzymes-from-indigenous-bacillus-isolates.pdf.Search in Google Scholar

[40] Sethi S, Datta A, Gupta BL, Gupta S. Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnology. 2013; Article ID 985685. DOI: 10.5402/2013/985685.10.5402/2013/985685439304125937986Search in Google Scholar

[41] Kim YK, Lee SC, Cho YY, Oh H J, Ko YH. Isolation of cellulolytic Bacillus subtilis strains from agricultural environments. ISRN Microbiology. 2012; Article ID 650563. DOI: 10.5402/2012/650563.10.5402/2012/650563365849823724328Search in Google Scholar

[42] Fatema K, Manchur MA. Isolation, identification and cellulase production by Bacillus brevis from the Acacia forest soil. IJRAF. 2015;2:14-22. http://www.ijraf.org/pdf/v2-i9/3.pdf.Search in Google Scholar

[43] Dias P, Ramos K, Padilha I, Araujo D, Santos SFM., Silva FLH. Optimization of cellulase production by Bacillus sp. isolated from sugarcane cultivated soil. Chem Eng Trans. 2014;38:277-282. DOI: 10.3303/CET1438047.10.3303/CET1438047Open DOISearch in Google Scholar

[44] Abbey JA, Percival D, Abbey L, Asiedu SK, Prithiviraj B, Schilder A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea) - prospects and challenges. Biocontrol Sci Technol. 2019;29(3):207-228. DOI: 10.1080/09583157.2018.1548574.10.1080/09583157.2018.1548574Open DOISearch in Google Scholar

[45] Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils - A review. Food Chem Toxicol. 2008;46:446-475. DOI: 10.1016/j.fct.2007.09.106.10.1016/j.fct.2007.09.10617996351Open DOISearch in Google Scholar

[46] Mohammadi P, Lotfi N, Naseri L, Etebarian HR.. Antifungal activities of essential oils from some Iranian medicinal plants against various postharvest moulds. J Med Plants Res. 2013;7(23):1699-1708. DOI: 10.5897/JMPR11.1518.10.5897/JMPR11.1518Open DOISearch in Google Scholar

[47] Felšöciová S, Kačániová M, Horská E, Vukovic N, Hleba L, Petrová J, et al. Antifungal activity of essential oils against selected terverticillate penicillia. Ann Agr Env Med. 2015;22(1):38-42. DOI: 10.5604/12321966.1141367.10.5604/12321966.114136725780826Open DOISearch in Google Scholar

[48] Lopez-Reyes JG, Spadaro D, Gullinoa ML, Garibaldia A. Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivoi. Flavour Frag J. 2010;25:171-177. DOI: 10.1002/ffj.1989.10.1002/ffj.1989Open DOISearch in Google Scholar

[49] Wójcik-Stopczyńska B, Jakowienko P, Wysocka G. The estimation of antifungal activity of essential oil and hydrosol obtained from wrinkled-leaf mint (Mentha crispa L.). Herba Pol. 2012;58:5-15. http://www.herbapolonica.pl/app/webroot/magazines-files/7494275-W%C3%B3jcik-Stopczy%C5%84ska%20et%20al.pdf.Search in Google Scholar

[50] Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacor. 2014;4:1-10. DOI: 10.3389/fphar.2013.00177.10.3389/fphar.2013.00177388731724454289Open DOISearch in Google Scholar

[51] Kamatou GPP, Vermaak I, Viljoen AM, Lawrence BM. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry. 2013;96:15-25. DOI: 10.1016/j.phytochem.2013.08.005.10.1016/j.phytochem.2013.08.00524054028Open DOISearch in Google Scholar

[52] Kizil S, Hasimi N, Tolan V, Kilinc E. Mineral content, essential oil components and biological activity of two mentha species (M. piperita L., M. spicata L.). Turk J Field Crops. 2010;2:148-153. https://pdfs.semanticscholar.org/b101/26563e4d0f5e8f168750f165dfaa56c3926f.pdf.Search in Google Scholar

[53] Soković MD, Vukojević J, Marin PD, Brkić DD, Vajs V, Griensven LJL. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules. 2009;14:238-249. DOI: 10.3390/molecules14010238.10.3390/14010238Open DOISearch in Google Scholar

[54] Edris AE, Farrag ES. Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapor phase. Nahrung/Food. 2003;7:117-121. DOI: 10.1002/food.200390021.10.1002/food.20039002112744290Open DOISearch in Google Scholar

eISSN:
1898-6196
Language:
English