1. bookVolume 26 (2019): Issue 1 (March 2019)
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo

Geostatistical Methods in Water Distribution Network Design - A Case Study

Published Online: 15 Apr 2019
Page range: 101 - 118
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo

Modeling of the loads of water supply networks and their subsequent forecasting is an element necessary for making optimum decisions in the process of planning the development and operation of the water supply networks. The results of this modeling are decisive for the selection of the diameters of the pipelines and their arrangement on the water demand area. This study presents the results of estimation of average values of loads for the selected investment variants. The aim of the article is to present the possibility of simulations and analyses of the geostatistical interpolation methods. Data input in the model regarded the fragment of the real water supply network administered by the Municipal Water and Sewerage Company in Warszawa. Results of the computer analyses for the presented investment variants were related to the operating data of the water supply network and the data on water demand for the years 2014-2017 and 2018-2025. The aim of this paper is to present the advantages of GIS for the water supply systems and to prove that using the appropriate IT system, with provision of proper data processing, may lead to decisions which are optimum in view of the established, often very complex criteria.

Keywords

[l] United Nations Population Fund. State of the World Population 2007: Unleashing the Potential of Urbangrowth. New York: United Nations Population Fund; 2007.Search in Google Scholar

[2] House-Peters LA, Chang H. Urban water demand modeling: Review of concepts, methods, and organizing principles. Water Resour Res. 2011;47:1-15. DOI: 10.1029/2010WR009624.10.1029/2010WR009624Open DOISearch in Google Scholar

[3] Anisha G, Kumar A, Ashok Kumar J, Suvarna Raju P. Analysis and design of water distribution network using EPANET for Chirala Municipality in Prakasam District of Andhra Pradesh. Int J Eng Appl Sci. 2016;3(4):53-60. https://www.ijeas.org/download_data/IJEAS0304026.pdf.Search in Google Scholar

[4] Boulos FP, Jacobsen BL, Heath EJ, Kamojjala S. Real-time modeling of water distribution systems: A case study. J Am Water Works Assoc. 2014;106(9):391-401.DOI: 10.5942/jawwa.2014.106.0076.10.5942/jawwa.2014.106.0076Open DOISearch in Google Scholar

[5] BañosR, Gil C, Reca J, Montoya GF. A memetic algorithm applied to the design of water distribution networks. Appl Soft Comput. 2010;10(1):261-266. DOI: 10.1016/j.asoc.2009.07.010.10.1016/j.asoc.2009.07.010Open DOISearch in Google Scholar

[6] Lee SJ, Wentz EA. Applying Bayesian Maximum Entropy to extrapolating local-scale water consumption in Maricopa County, Arizona. Water Resour Res. 2008;44, W01401. DOI: 10.1029/2007WR006101.10.1029/2007WR006101Open DOISearch in Google Scholar

[7] Sunela MI, Puust R. Real time water supply system hydraulic and quality modeling - a case study. Procedia Eng. 2015;119:744-752. DOI: 10.1016/j.proeng.2015.08.928.10.1016/j.proeng.2015.08.928Open DOISearch in Google Scholar

[8] Shandas V, Parandvash GH. Integrating urban form and demographics in water-demand management: An empirical case study of Portland, Oregon. Environ Planning B Plannning Des. 2010;37:112-128. DOI: 10.1068/b35036.Search in Google Scholar

[9] Franczyk J, Chang H. Spatial analysis of water use in Oregon, USA, 1985-2005. Water Resour Manage. 2009;23:755-774. DOI: 10.1007/s11269-008-9298-9.10.1007/s11269-008-9298-9Open DOISearch in Google Scholar

[10] Wackernagel H. Principal Component Analysis for Autocorrelated Data: A Geostatistical Perspective. Technical Report N-22/98/G, Centre de Geostatistique-Ecole de Mines de Paris, 1998. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.7550&rep=rep1&type=pdf.Search in Google Scholar

[11] Savelieva E. Using ordinary kriging to model radioactive contamination data. Appl GIS. 2005;1(2):10-01-10-10. DOI: 10.2104/ag050010.Search in Google Scholar

[12] Bancheri M, Serafin F, Bottazzi M, Abera W, Formetta G, Rigon R. The design, deployment, and testing of kriging models in GEOframe with SIK-0.9.8. Geosci Model Dev. 2018;11:2189-2207. DOI: 10.5194/gmd-11-2189-2018.Search in Google Scholar

[13] Qiao P, Lei M, Yang S, Yang J, Guo G, Zhou X. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing. Environ Sci Pollut Res Int. 2018;25(16):15597-15608. DOI: 10.1007/s11356-018-1552-y.10.1007/s11356-018-1552-yOpen DOISearch in Google Scholar

[14] Goovaerts P. Geostatistics for Natural Resources Evaluation. New York: Oxford University Press; 1997. ISBN: 0195115384.Search in Google Scholar

[15] Isaaks EH, Srivastava RM. An Introduction to Applied Geostatistics. New York: Oxford University Press;1989. ISBN: 9780195050134.Search in Google Scholar

[16] Farmer WH. Ordinary kriging as a tool to estimate historical daily streamflow records. Hydrol Earth Syst Sci. 2016;20:2721-2735. DOI: 10.5194/hess-20-2721-2016.10.5194/hess-20-2721-2016Open DOISearch in Google Scholar

[17] Zhang J, Li X, Yang R, Liu Q, Zhao L, Dou B. An extended kriging method to interpolate near-surface soil moisture data measured by wireless sensor networks. Sensors 2017;17(6):1390. DOI: 10.3390/s17061390.10.3390/s1706139028617351Open DOISearch in Google Scholar

[18] Szeląg B, Gawdzik A, Gawdzik A. Application of selected methods of black box for modelling the settleability process in wastewater treatment plant. Ecol Chem Eng S. 2017;24(1):119-127. DOI: 10.1515/eces-2017-0009.10.1515/eces-2017-0009Open DOISearch in Google Scholar

[19] Miller T, Poleszczuk G. Prediction of the seasonal changes of the chloride concentrations in urban water reservoir. Ecol Chem Eng S. 2017;24(4):595-611. DOI: 10.1515/eces-2017-0039.10.1515/eces-2017-0039Open DOISearch in Google Scholar

[20] Chai T, Draxler R. Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature. Geosci Model Dev. 2014;7:1247-1250. DOI: 10.5194/gmd-7-1247-2014.10.5194/gmd-7-1247-2014Open DOISearch in Google Scholar

[21] Zeng W, Lei G, Zhang H, Hong M, Xu C, Wu J, et al. Estimating root zone moisture from surface soil using limited data. Ecol Chem Eng S. 2017;24(4):501-516. DOI: 10.1515/eces-2017-0033.10.1515/eces-2017-0033Open DOISearch in Google Scholar

[22] Hengl T, Nussbaum M, Wright MN, Heuvelink GBM, Gräler B. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. Peer J. 2018;6:e5518. DOI: 10.7717/peerj.5518.10.7717/peerj.5518Open DOISearch in Google Scholar

[23] Corbella HM, Sauri Pujol D. What lies behind domestic water use? A review essay on the drivers of domestic water consumption. Bol Asoc Geogr Esp. 2009;50:297-314. http://age.ieg.csic.es/boletin/50/13%20MARCH.pdf.Search in Google Scholar

[24] Irwin EG, Jayaprakash C, Munroe DK. Towards a comprehensive framework for modeling urban spatial dynamics. Landscape Ecol. 2009;24:1223-1236. DOI: 10.1007/s10980-009-9353-9.10.1007/s10980-009-9353-9Open DOISearch in Google Scholar

[25] Zhou SL, McMahon TA, Walton A, Lewis J. Forecasting daily urban water demand: a case study of Melbourne. J Hydrol. 2000;236:153-164. DOI: 10.1016/S0022-1694(00)00287-0.10.1016/S0022-1694(00)00287-0Open DOISearch in Google Scholar

[26] Rasooli A, Kang D. Designing of hydraulically balanced water distribution network based on GIS and EPANET. Int J Adv Computer Sci Appl. 2016;7(2):118-125. DOI: 10.14569/IJACSA.2016.070216.10.14569/IJACSA.2016.070216Open DOISearch in Google Scholar

[27] Jenkins MW, Lund JR. Integrating yield and shortage management under multiple uncertainties. J Water Resources Plan Manage. 2000;126(5):288-297. DOI: 10.1061/(ASCE)0733-9496(2000)126:5(288).10.1061/(ASCE)0733-9496(2000)126:5(288)Open DOISearch in Google Scholar

[28] Narany ST, Ramli MF, Aris AZ, Sulaiman WNA, Fakharian K. Spatial assessment of groundwater quality monitoring wells using indicator kriging and risk mapping, Amol-Babol Plain, Iran. Water. 2014;6:68-85. DOI: 10.3390/w6010068.10.3390/w6010068Open DOISearch in Google Scholar

[29] Davis J. Statistics and Data Analysis in Geology. New York: John Wiley Sons Inc; 2002. ISBN: 0471080799.Search in Google Scholar

[30] Namysłowska-Wilczyńska B, Wilczyński A. Application of geostatistical methods to spatial analysis of electrical load variation over area of Poland. Annals Geomatics, 2005;3(2):125-138. http://rg.ptip.org.pl/index.php/rg/article/viewFile/RG2005-2-Namyslowska-WilczynskaWilczynski/892.Search in Google Scholar

[31] Wackernagel H. Multivariate Geostatistics. An Introduction with Applications. Third, completely revised edition. Berlin: Springer-Verlag; 2003. DOI: 10.1007/978-3-662-05294-5.10.1007/978-3-662-05294-5Open DOISearch in Google Scholar

[32] Zarychta R, Zarychta A. Application of ordinary kriging to reconstruct and visualise the relief in the location of an open pit sand mine. Cartography and Remote Sensing, Special issue: Measurement Technologies in Surveying. 2013;133-146. ISBN: 9788361576267.Search in Google Scholar

[33] Klauberg C, Hudak AT, Bright BC, Boschetti L, Dickinson MB, Kremens RL, et al. Use of ordinary kriging and Gaussian conditional simulation to interpolate airborne fire radiative energy density estimates. Int J Wildland Fire. 2018;27(4):228-240. DOI: 10.1071/WF17113.10.1071/WF17113Open DOISearch in Google Scholar

Plan your remote conference with Sciendo